THERMODYNAMIC Q-DISTRIBUTIONS THAT ARENT

被引:48
作者
VOKOS, S [1 ]
ZACHOS, C [1 ]
机构
[1] ARGONNE NATL LAB,DIV HIGH ENERGY PHYS,ARGONNE,IL 60439
关键词
D O I
10.1142/S0217732394000022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Bosonic q-oscillators commute with themselves and so their free distribution is Planckian. In a cavity, their emission and absorption rates may grow or shrink - and even diverge - but they nevertheless balance to yield the Planck distribution via Einstein's equilibrium method, (a careless application of which might produce spurious q-dependent distribution functions). This drives home the point that the black-body energy distribution is not a handle for distinguishing q-excitations from plain oscillators. A maximum cavity size is suggested by the inverse critical frequency of such emission/absorption rates at a given temperature, or a maximum temperature at a given frequency. To remedy fragmentation of opinion on the subject, we provide some discussion, context, and references.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 73 条
[11]  
BULLOUGH R, 1992, J PHYS A, V25, P4057
[12]  
BULLOUGH R, 1992, PHYS LETT A, V168, P264
[13]  
BULLOUGH RK, 1992, 20TH P INT C DIFF GE, P488
[14]   DYNAMICS OF A Q-ANALOG OF THE QUANTUM HARMONIC-OSCILLATOR [J].
BUZEK, V .
JOURNAL OF MODERN OPTICS, 1991, 38 (04) :801-812
[15]   SQUEEZING AND QUANTUM GROUPS [J].
CELEGHINI, E ;
RASETTI, M ;
VITIELLO, G .
PHYSICAL REVIEW LETTERS, 1991, 66 (16) :2056-2059
[16]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[17]   QUANTUM GROUPS OF MOTION AND ROTATIONAL SPECTRA OF HEAVY-NUCLEI [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
PHYSICS LETTERS B, 1992, 280 (3-4) :180-186
[18]   3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2548-2551
[19]   STATISTICS OF Q-OSCILLATORS, QUONS AND RELATIONS TO FRACTIONAL STATISTICS [J].
CHAICHIAN, M ;
FELIPE, RG ;
MONTONEN, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (16) :4017-4034
[20]   Q-DEFORMED JACOBI IDENTITY, Q-OSCILLATORS AND Q-DEFORMED INFINITE-DIMENSIONAL ALGEBRAS [J].
CHAICHIAN, M ;
KULISH, P ;
LUKIERSKI, J .
PHYSICS LETTERS B, 1990, 237 (3-4) :401-406