SCALING IN HARD TURBULENT RAYLEIGH-BENARD FLOW

被引:24
作者
GROSSMANN, S
LOHSE, D
机构
[1] Fachbereich Physik, Philipps-Universität, W-3550 Marburg
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 02期
关键词
D O I
10.1103/PhysRevA.46.903
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Rayleigh-Benard flow for Rayleigh numbers Ra = 10(8)-10(11) (hard turbulence regime) is studied solving the Boussinesq equations with the Fourier-Weierstrass ansatz introduced recently [Eggers and Grossmann, Phys. Fluids A 3, 1958 (1991)]. The plumes and swirls detaching from the boundary layers are mimicked by volume stirring on all scales down to the Rayleigh-number-dependent scale of these thermals. Wave-number spectra, frequency spectra, and structure functions are presented both for velocity and temperature fluctuations. As the scale decreases the velocity-temperature cross correlation decreases much faster than both velocity and temperature autocorrelations. In the viscous subrange all wave-number spectra decay exponentially. Based on the experimental Ra dependence of the mean temperature fluctuations we can calculate the Ra dependence of the mean velocity fluctuations as well as of the mean temperature and velocity time derivatives. The inner length scale-eta is found to scale is-proportional-to Ra-0.32 +/- 0.01.
引用
收藏
页码:903 / 917
页数:15
相关论文
共 42 条
[1]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[2]  
Balachandar S., 1989, Journal of Scientific Computing, V4, P219, DOI 10.1007/BF01061502
[3]   PROBABILITY-DISTRIBUTION FUNCTIONS IN TURBULENT CONVECTION [J].
BALACHANDAR, S ;
SIROVICH, L .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (05) :919-927
[4]   ON THE WEIERSTRASS-MANDELBROT FRACTAL FUNCTION [J].
BERRY, MV ;
LEWIS, ZV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1980, 370 (1743) :459-484
[5]   TURBULENT SPECTRA IN A STABLY STRATIFIED ATMOSPHERE [J].
BOLGIANO, R .
JOURNAL OF GEOPHYSICAL RESEARCH, 1959, 64 (12) :2226-2229
[6]   SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION [J].
CASTAING, B ;
GUNARATNE, G ;
HESLOT, F ;
KADANOFF, L ;
LIBCHABER, A ;
THOMAE, S ;
WU, XZ ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF FLUID MECHANICS, 1989, 204 :1-30
[7]  
Chandrasekhar S., 1981, HYDRODYNAMIC HYDROMA
[8]   PROBABILITIES FOR TEMPERATURE DIFFERENCES IN RAYLEIGH-BENARD CONVECTION [J].
CHING, ESC .
PHYSICAL REVIEW A, 1991, 44 (06) :3622-3629
[9]   INVESTIGATION OF TURBULENT THERMAL CONVECTION BETWEEN HORIZONTAL PLATES [J].
DEARDORFF, JW ;
WILLIS, GE .
JOURNAL OF FLUID MECHANICS, 1967, 28 :675-+
[10]   NUMERICAL SIMULATIONS OF SOFT AND HARD TURBULENCE - PRELIMINARY-RESULTS FOR 2-DIMENSIONAL CONVECTION [J].
DELUCA, EE ;
WERNE, J ;
ROSNER, R ;
CATTANEO, F .
PHYSICAL REVIEW LETTERS, 1990, 64 (20) :2370-2373