STATIONARY SHEAR-FLOW IN BOUNDARY DRIVEN HAMILTONIAN-SYSTEMS

被引:23
作者
CHERNOV, NL [1 ]
LEBOWITZ, JL [1 ]
机构
[1] RUTGERS STATE UNIV, DEPT MATH & PHYS, NEW BRUNSWICK, NJ 08903 USA
关键词
D O I
10.1103/PhysRevLett.75.2831
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate stationary nonequilibrium states of particles moving according to Hamiltonian dynamics with Maxwell demon ''reflection rules'' at the walls. These rules simulate, in an energy but not phase space volume conserving way, moving boundaries. The resulting dynamics may or may not be time reversible. In either case the average rates of phase space volume contraction and macroscopic entropy production are shown to be equal for stationary hydrodynamic shear flows, i.e., when the velocity distribution of particles incident on the walls is a local Maxwellian. Molecular dynamic simulations of hard disks in a channel produce a steady shear flow with the predicted behavior.
引用
收藏
页码:2831 / 2834
页数:4
相关论文
共 26 条
[1]   STEADY-STATE ELECTRICAL-CONDUCTION IN THE PERIODIC LORENTZ GAS [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :569-601
[2]   DERIVATION OF OHM LAW IN A DETERMINISTIC MECHANICAL MODEL [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2209-2212
[3]  
CHERNOV NI, IN PRESS
[4]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[5]   HYDRODYNAMIC LIMIT OF THE STATIONARY BOLTZMANN-EQUATION IN A SLAB [J].
ESPOSITO, R ;
LEBOWITZ, JL ;
MARRA, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (01) :49-80
[6]  
Evans D. J., 1990, STAT MECH NONEQUI LI
[7]   VISCOSITY OF A SIMPLE FLUID FROM ITS MAXIMAL LYAPUNOV EXPONENTS [J].
EVANS, DJ ;
COHEN, EGD ;
MORRISS, GP .
PHYSICAL REVIEW A, 1990, 42 (10) :5990-5997
[8]   LATTICE GAS MODELS IN CONTACT WITH STOCHASTIC RESERVOIRS - LOCAL EQUILIBRIUM AND RELAXATION TO THE STEADY-STATE [J].
EYINK, G ;
LEBOWITZ, JL ;
SPOHN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 140 (01) :119-131
[9]  
EYINK GL, 1992, NATO ADV SCI I B-PHY, V292, P323
[10]   DYNAMICAL ENSEMBLES IN NONEQUILIBRIUM STATISTICAL-MECHANICS [J].
GALLAVOTTI, G ;
COHEN, EGD .
PHYSICAL REVIEW LETTERS, 1995, 74 (14) :2694-2697