PARAMETRIZATIONS FOR DAUBECHIES WAVELETS

被引:11
作者
LINA, JM [1 ]
MAYRAND, M [1 ]
机构
[1] UNIV MONTREAL, PHYS NUCL LAB, MONTREAL H3C 3J7, PQ, CANADA
关键词
D O I
10.1103/PhysRevE.48.R4160
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two parametrizations are presented for the Daubechies wavelets. The first one is based on the correspondence between the set of multiresolution analysis with compact support orthonormal basis and the group SUI(2,C[z,z(-1)]) developed by Pollen. In the second parametrization, emphasis is put on the regularity condition of the Daubechies wavelets and a solitonic cellular automaton algorithm is introduced to solve the orthonormality conditions characterizing the Daubechies wavelets.
引用
收藏
页码:R4160 / R4163
页数:4
相关论文
共 13 条
[1]   THE BINOMIAL QMF-WAVELET TRANSFORM FOR MULTIRESOLUTION SIGNAL DECOMPOSITION [J].
AKANSU, AN ;
HADDAD, RA ;
CAGLAR, H .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (01) :13-19
[2]   WAVELET TRANSFORM OF MULTIFRACTALS [J].
ARNEODO, A ;
GRASSEAU, G ;
HOLSCHNEIDER, M .
PHYSICAL REVIEW LETTERS, 1988, 61 (20) :2281-2284
[3]  
BRUSCHI M, UNPUB
[4]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[5]  
Daubechies I., 1992, CBMS SERIES
[6]   WAVELET TRANSFORMS AND THEIR APPLICATIONS TO TURBULENCE [J].
FARGE, M .
ANNUAL REVIEW OF FLUID MECHANICS, 1992, 24 :395-457
[7]   NECESSARY AND SUFFICIENT CONDITIONS FOR CONSTRUCTING ORTHONORMAL WAVELET BASES [J].
LAWTON, WM .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (01) :57-61
[8]  
LIANDRAT J, 1990, EUR J MECH B-FLUID, V9, P1
[9]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693
[10]  
Meyer Y., 1991, ONDELETTES