共 24 条
TRANSPORT AND UTILIZATION OF FERRIOXAMINE-E-BOUND IRON IN ERWINIA-HERBICOLA (PANTOEA-AGGLOMERANS)
被引:22
作者:
MATZANKE, BF
[1
]
BERNER, I
[1
]
BILL, E
[1
]
TRAUTWEIN, AX
[1
]
WINKELMANN, G
[1
]
机构:
[1] MED UNIV LUBECK,INST PHYS,W-2400 LUBECK,GERMANY
来源:
BIOLOGY OF METALS
|
1991年
/
4卷
/
03期
关键词:
ERWINIA-HERBICOLA (PANTOEA-AGGLOMERANS);
FERRIOXAMINE-E;
INVIVO MOSSBAUER SPECTROSCOPY;
IRON METABOLISM;
IRON TRANSPORT;
SIDEROPHORES;
D O I:
10.1007/BF01141312
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
We have analyzed ferrioxamine-E-mediated iron uptake and metabolization in Erwinia herbicola K4 (Pantoea agglomerans) by means of in vivo Mossbauer spectroscopy and radioactive labeling techniques. A comparison of cell spectra with the spectrum of ferrioxamine clearly demonstrates that ferrioxamine E is not accumulated in the cell, indicating a fast metal transfer. Only two major components of iron metabolism can be detected, a ferric and a ferrous species. At 30 min after uptake, 86% of the internalized metal corresponded to a ferrous ion compound and 14% to a ferric iron species. Metal transfer apparently involves a reductive process. With progressing growth, the oxidized species of the two major proteins becomes dominant. The two iron metabolites closely resemble species previously isolated from Escherichia coli. These components of iron metabolism differ from bacterio-ferritin, cytochromes and most iron-sulfur proteins. All other iron-containing cellular components are at least one order of magnitude lower in concentration. We suggest that the ferrous and ferric iron species correspond to two different oxidation states of a low-molecular mass protein.
引用
收藏
页码:181 / 185
页数:5
相关论文