MISCELLANEOUS ERROR-BOUNDS FOR MULTIQUADRIC AND RELATED INTERPOLATORS

被引:198
作者
MADYCH, WR
机构
[1] Department of Mathematics, The University of Connecticut, Storrs
关键词
D O I
10.1016/0898-1221(92)90175-H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish several types of a priori error bounds for multiquadric and related interpolators. The results are stated and proven in the general multivariate case. These estimates show, for example, that in many cases such interpolators converge very quickly and can be used in the recovery of band limited functions from discrete data. We also include numerical experiments which illustrate the theoretical results.
引用
收藏
页码:121 / 138
页数:18
相关论文
共 18 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
Buhmann MD, 1991, CURVES SURFACES, P51
[3]  
BUTZER PL, 1988, JAHRESBER DTSCH MATH, V90, P1
[4]   SCATTERED DATA INTERPOLATION BY LINEAR-COMBINATIONS OF TRANSLATES OF CONDITIONALLY POSITIVE DEFINITE FUNCTIONS [J].
GUO, KH ;
SUN, XP .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1991, 12 (1-2) :137-152
[6]   ALGORITHMS FOR CARDINAL INTERPOLATION USING BOX SPLINES AND RADIAL BASIS FUNCTIONS [J].
JETTER, K ;
STOCKLER, J .
NUMERISCHE MATHEMATIK, 1991, 60 (01) :97-114
[8]  
Madych W.R., 1988, APPROX THEORY APPL, V4, P77, DOI [10.1090/S0025-5718-1990-0993931-7, DOI 10.1090/S0025-5718-1990-0993931-7]
[9]  
MADYCH WER, 1989, MULTIVARIATE APPRO 4, V90, P241
[10]   AN ESTIMATE FOR MULTIVARIATE INTERPOLATION [J].
MADYCH, WR ;
POTTER, EH .
JOURNAL OF APPROXIMATION THEORY, 1985, 43 (02) :132-139