EMBRYONIC MODULATION OF BASIC FIBROBLAST GROWTH-FACTOR IN THE RAT UTERUS

被引:55
作者
CARLONE, DL [1 ]
RIDER, V [1 ]
机构
[1] TUFTS UNIV, SCH VET MED, DEPT ANAT & CELLULAR BIOL, PROGRAM CELL MOLEC & DEV BIOL, BOSTON, MA 02111 USA
关键词
D O I
10.1095/biolreprod49.4.653
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cellular proliferation and differentiation are critical components of uterine remodeling prior to embryonic implantation. Recent studies have shown that the ovarian hormones. estrogen and progesterone, modulate these cellular events through the production of growth factors. Basic fibroblast growth factor (bFGF) has been implicated in the control of cell proliferation, differentiation, and embryonic development. To clarify its role in uterine remodeling, the cellular distribution of bFGF was examined immunohistochemically in the rat uterus during early pregnancy (Days 2-6). Basic FGF localized intracellularly in stromal and epithelial cells and within the extracellular matrix at Days 2 and 3. It was distinctly evident at the apical surface of epithelial cells at Days 4 and 5 of pregnancy. Concurrent with this apical localization, bFGF was present in the uterine luminal fluid, suggesting release of this growth factor from epithelial cells. Embryonic implantation was accompanied by increased intracellular bFGF content in luminal epithelial and decidual cells. However, similar cells outside of the implantation site and in the artificially decidualized uterus did not express analogous bFGF levels, indicating that a unique signal from the embryo triggers bFGF expression. Changes in the cell-specific distribution of bFGF imply a multifunctional role for this growth factor in uterine cell proliferation, differentiation, and embryonic implantation. In addition, the apical release of bFGF from epithelial cells indicates utilization of a novel secretory pathway for bFGF export during early pregnancy.
引用
收藏
页码:653 / 665
页数:13
相关论文
共 60 条
[1]   NUCLEOTIDE-SEQUENCE OF A BOVINE CLONE ENCODING THE ANGIOGENIC PROTEIN, BASIC FIBROBLAST GROWTH-FACTOR [J].
ABRAHAM, JA ;
MERGIA, A ;
WHANG, JL ;
TUMOLO, A ;
FRIEDMAN, J ;
HJERRILD, KA ;
GOSPODAROWICZ, D ;
FIDDES, JC .
SCIENCE, 1986, 233 (4763) :545-548
[2]  
AITKEN RJ, 1977, J REPROD FERTIL, V50, P29
[3]   NUCLEAR TRANSLOCATION OF BASIC FIBROBLAST GROWTH-FACTOR [J].
AMALRIC, F ;
BALDIN, V ;
BOSCBIERNE, I ;
BUGLER, B ;
COUDERC, B ;
GUYADER, M ;
PATRY, V ;
PRATS, H ;
ROMAN, AM ;
BOUCHE, G .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1991, 638 :127-138
[5]   FIBROBLAST GROWTH-FACTORS [J].
BAIRD, A ;
WALICKE, PA .
BRITISH MEDICAL BULLETIN, 1989, 45 (02) :438-452
[6]   TRANSLOCATION OF BFGF TO THE NUCLEUS IS G1 PHASE CELL-CYCLE SPECIFIC IN BOVINE AORTIC ENDOTHELIAL-CELLS [J].
BALDIN, V ;
ROMAN, AM ;
BOSCBIERNE, I ;
AMALRIC, F ;
BOUCHE, G .
EMBO JOURNAL, 1990, 9 (05) :1511-1517
[7]   BASIC FIBROBLAST GROWTH-FACTOR BINDS TO SUBENDOTHELIAL EXTRACELLULAR-MATRIX AND IS RELEASED BY HEPARITINASE AND HEPARIN-LIKE MOLECULES [J].
BASHKIN, P ;
DOCTROW, S ;
KLAGSBRUN, M ;
SVAHN, CM ;
FOLKMAN, J ;
VLODAVSKY, I .
BIOCHEMISTRY, 1989, 28 (04) :1737-1743
[8]   UTERINE EXPRESSION OF LEUKEMIA INHIBITORY FACTOR COINCIDES WITH THE ONSET OF BLASTOCYST IMPLANTATION [J].
BHATT, H ;
BRUNET, LJ ;
STEWART, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (24) :11408-11412
[9]   BASIC FIBROBLAST GROWTH-FACTOR ENTERS THE NUCLEOLUS AND STIMULATES THE TRANSCRIPTION OF RIBOSOMAL GENES IN ABAE CELLS UNDERGOING G0-]G1 TRANSITION [J].
BOUCHE, G ;
GAS, N ;
PRATS, H ;
BALDIN, V ;
TAUBER, JP ;
TEISSIE, J ;
AMALRIC, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (19) :6770-6774
[10]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3