SYMPLECTIC INTEGRATION OF HAMILTONIAN WAVE-EQUATIONS

被引:127
作者
MCLACHLAN, R
机构
[1] Program in Applied Mathematics, University of Colorado at Boulder, Boulder, 80309-0526
关键词
D O I
10.1007/BF01385708
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical integration of a wide class of Hamiltonian partial differential equations by standard symplectic schemes is discussed, with a consistent, Hamiltonian approach. We discretize the Hamiltonian and the Poisson structure separately, then form the the resulting ODE's. The stability, accuracy, and dispersion of different explicit splitting methods are analyzed, and we give the circumstances under which die best results can be obtained; in particular, when the Hamiltonian can be split into linear and nonlinear terms. Many different treatments and examples are compared.
引用
收藏
页码:465 / 492
页数:28
相关论文
共 27 条
[1]   ON HOMOCLINIC STRUCTURE AND NUMERICALLY INDUCED CHAOS FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
ABLOWITZ, MJ ;
HERBST, BM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (02) :339-351
[2]  
ABLOWITZ MJ, 1993, UNPUB PHYS REV LETT
[3]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[4]   AN UNCONDITIONALLY STABLE 3-LEVEL EXPLICIT DIFFERENCE SCHEME FOR THE SCHRODINGER-EQUATION WITH A VARIABLE-COEFFICIENT [J].
DAI, WH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :174-181
[5]  
DEFRUTOS J, 1990, COMPUT METHOD APPL M, V80, P417, DOI 10.1016/0045-7825(90)90046-O
[6]   PSEUDOSPECTRAL METHOD FOR THE GOOD BOUSSINESQ EQUATION [J].
DEFRUTOS, J ;
ORTEGA, T ;
SANZSERNA, JM .
MATHEMATICS OF COMPUTATION, 1991, 57 (195) :109-122
[7]  
DEFRUTOS J, 1991, 1992 U VALL DEP MAT
[8]  
FEI Z, 1991, APPL MATH COMPUT, V45, P17
[9]  
FENG K, 1987, LECT NOTES MATH, V1297, P1
[10]   INSTABILITY-DRIVEN ENERGY-TRANSPORT IN NEAR-INTEGRABLE, MANY DEGREES-OF-FREEDOM, HAMILTONIAN-SYSTEMS [J].
FOREST, MG ;
GOEDDE, CG ;
SINHA, A .
PHYSICAL REVIEW LETTERS, 1992, 68 (18) :2722-2725