THE THERMOHALINE CIRCULATION OF THE ARCTIC-OCEAN AND THE GREENLAND SEA

被引:53
作者
RUDELS, B
机构
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1995年 / 352卷 / 1699期
关键词
D O I
10.1098/rsta.1995.0071
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The thermohaline circulation of the Arctic Ocean and the Greenland Sea is conditioned by the harsh, high latitude climate and by bathymetry. Warm Atlantic water loses its heat and also becomes less saline by added river run-off. In the Arctic Ocean, this leads to rapid cooling of the surface water and to ice formation. Brine, released by freezing, increases the density of the surface layer, but the ice cover also insulates the ocean and reduces heat loss. This limits density increase, and in the central Arctic Ocean a low salinity surface layer and a permanent ice cover are maintained. Only over the shallow shelves, where the entire water column is cooled to freezing, can dense water form and accumulate to eventually sink down the continental slope into the deep ocean. The part of the Atlantic water which enters the Arctic Ocean is thus separated into a low density surface layer and a denser, deep circulation. These two loops exit through Fram Strait. The waters are partly rehomogenized in the Greenland Sea. The main current is confined to the Greenland continental slope, but polar surface water and ice are injected into the central gyre and create a low density lid, allowing for ice formation in winter. This leads to a density increase sufficient to trigger convection, upwelling and subsequent ice melt. The convection maintains the weak stratification of the gyre and also reinforces the deep circulation loop. As the transformed waters return to the North Atlantic the low-salinity, upper water of the East Greenland Current enters the Labrador Sea and influences the formation of Labrador Sea deep water. The dense loop passes through Denmark Strait and the Faroe-Shetland Channel and sinks to contribute to the North Atlantic deep water. Changes in the forcing conditions might alter the relative strength of the two loops. This could affect the oceanic thermohaline circulation on a global scale
引用
收藏
页码:287 / 299
页数:13
相关论文
共 45 条
[11]  
GARWOOD RW, 1995, POLAR OCEANS THEIR R, P199
[12]   IMPORTANCE OF CONVECTIVE MIXING IN SEASONAL ICE MARGIN SIMULATIONS [J].
HOUSSAIS, MN ;
HIBLER, WD .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1993, 98 (C9) :16427-16448
[13]  
JONES EP, 1995, IN PRESS DEEP SEA RE
[14]  
JONES EP, 1990, POLAR OCEANOGRAPHY B, P407
[15]  
JONES H, 1993, J PHYS OCEANOGR, V23, P1009, DOI 10.1175/1520-0485(1993)023<1009:CWRIAN>2.0.CO
[16]  
2
[17]  
KIILERICH A, 1945, MEDD GRONLAND, V144, P63
[18]  
LOENG H, 1993, ICES CM1993C41 HYDR
[19]  
McCartney MS, 1982, J MAR RES, V40, P427
[20]  
MCCARTNEY MS, 1984, J PHYS OCEANOGR, V14, P922, DOI 10.1175/1520-0485(1984)014<0922:WTCWCI>2.0.CO