FLAVOPROTEIN STRUCTURE AND MECHANISM .5. TRYPANOTHIONE REDUCTASE AND LIPOAMIDE DEHYDROGENASE AS TARGETS FOR A STRUCTURE-BASED DRUG DESIGN

被引:69
作者
KRAUTHSIEGEL, RL
SCHONECK, R
机构
[1] Institut für Biochemie II, Universität Heidelberg, Heidelberg
[2] Institut für Biochemie II, Universität Heidelberg, D-69120, Heidelberg
关键词
TRYPANOTHIONE REDUCTASE; LIPOAMIDE DEHYDROGENASE; DRUG DESIGN; CHAGAS DISEASE; FLAVOPROTEIN STRUCTURES;
D O I
10.1096/fasebj.9.12.7672506
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trypanothione reductase (TR) is a flavoenzyme that has been found only in parasitic protozoa of the order Kinetoplastida. The enzyme catalyzes the NADPH-dependent reduction of glutathionylspermidine conjugates and is a key enzyme of the parasite's thiol metabolism, Consequently, TR is an attractive target molecule for a structure-based drug development against Chagas' disease, African sleeping sickness, and other diseases caused by trypanosomes and leishmanias. The three-dimensional structures of TR and of three enzyme substrate complexes have been solved, Several classes of compounds are discussed as guide structures for the design of specific inhibitors. Among them are tricyclic compounds such as acridines and phenothiazines, which competitively inhibit TR but not the related host enzyme glutathione reductase, as well as oxidase activity-inducing quinones and nitrofurans. Lipoamide dehydrogenase (LipDH) is another flavoprotein discussed as a target molecule for an antitrypanosomal therapy. In Trypnnosoma cruzi, an organism that is highly susceptible to oxidative stress, LipDH participates in the redox cycling of nifurtimox, one of the most effective anti-Chagas agents. In conclusion, the structurally related enzymes TR and LipDH exhibit an unusually high one-electron-reducing capacity. Consequently, turncoat inhibitors and other compounds inducing an oxidase activity in both enzymes are promising drug candidates against Chagas' disease.
引用
收藏
页码:1138 / 1146
页数:9
相关论文
共 49 条
[1]   MOLECULAR CHARACTERIZATION OF THE TRYPANOTHIONE REDUCTASE GENE FROM CRITHIDIA-FASCICULATA AND TRYPANOSOMA-BRUCEI - COMPARISON WITH OTHER FLAVOPROTEIN DISULFIDE OXIDOREDUCTASES WITH RESPECT TO SUBSTRATE-SPECIFICITY AND CATALYTIC MECHANISM [J].
ABOAGYEKWARTENG, T ;
SMITH, K ;
FAIRLAMB, AH .
MOLECULAR MICROBIOLOGY, 1992, 6 (21) :3089-3099
[2]   SUBSTRATE INTERACTIONS BETWEEN TRYPANOTHIONE REDUCTASE AND N(1)-GLUTATHIONYLSPERMIDINE DISULFIDE AT 0.28-NM RESOLUTION [J].
BAILEY, S ;
SMITH, K ;
FAIRLAMB, AH ;
HUNTER, WN .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 213 (01) :67-75
[3]  
BAILEY S, 1994, ACTA CRYSTALLOGR B, V50, P193
[4]   RATIONALLY DESIGNED SELECTIVE INHIBITORS OF TRYPANOTHIONE REDUCTASE - PHENOTHIAZINES AND RELATED TRICYCLICS AS LEAD STRUCTURES [J].
BENSON, TJ ;
MCKIE, JH ;
GARFORTH, J ;
BORGES, A ;
FAIRLAMB, AH ;
DOUGLAS, KT .
BIOCHEMICAL JOURNAL, 1992, 286 :9-11
[5]   REDOX ENZYME ENGINEERING - CONVERSION OF HUMAN GLUTATHIONE-REDUCTASE INTO A TRYPANOTHIONE REDUCTASE [J].
BRADLEY, M ;
BUCHELER, US ;
WALSH, CT .
BIOCHEMISTRY, 1991, 30 (25) :6124-6127
[6]   ARSENICAL-RESISTANT TRYPANOSOMES LACK AN UNUSUAL ADENOSINE TRANSPORTER [J].
CARTER, NS ;
FAIRLAMB, AH .
NATURE, 1993, 361 (6408) :173-176
[7]  
CENAS N, 1994, BIOCHEM BIOPH RES CO, V204, P221
[8]   MECHANISM OF REDUCTION OF QUINONES BY TRYPANOSOMA-CONGOLENSE TRYPANOTHIONE REDUCTASE [J].
CENAS, NK ;
ARSCOTT, D ;
WILLIAMS, CH ;
BLANCHARD, JS .
BIOCHEMISTRY, 1994, 33 (09) :2509-2515
[9]   MECHANISM OF INHIBITION OF TRYPANOTHIONE REDUCTASE AND GLUTATHIONE-REDUCTASE BY TRIVALENT ORGANIC ARSENICALS [J].
CUNNINGHAM, ML ;
ZVELEBIL, MJJM ;
FAIRLAMB, AH .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 221 (01) :285-295
[10]   GENERATION OF SUPEROXIDE ANION AND HYDROGEN-PEROXIDE INDUCED BY NIFURTIMOX IN TRYPANOSOMA-CRUZI [J].
DOCAMPO, R ;
STOPPANI, AOM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1979, 197 (01) :317-321