NUMERICAL COMPUTATION OF BRANCH POINTS IN ORDINARY DIFFERENTIAL-EQUATIONS

被引:50
作者
SEYDEL, R
机构
[1] Mathematisches Institut, Technische Universität München, München, D-8000
关键词
Subject Classifications: AMS (MOS): 65L10; CR:; 5.17;
D O I
10.1007/BF01397649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the computation of branch points in ordinary differential equations. A direct numerical method is presented which requires the solution of only one boundary value problem. The method handles the general case of branching from a nontrivial solution which is a-priori unknown. A testfunction is proposed which may indicate branching if used in continuation methods. Several real-life problems demonstrate the procedure. © 1979 Springer-Verlag.
引用
收藏
页码:51 / 68
页数:18
相关论文
共 24 条
[1]   NUMERICAL TREATMENT OF ORDINARY DIFFERENTIAL EQUATIONS BY EXTRAPOLATION METHODS [J].
BULIRSCH, R ;
STOER, J .
NUMERISCHE MATHEMATIK, 1966, 8 (01) :1-&
[2]  
BULIRSCH R, 1976, COMMUNICATION
[3]  
BULIRSCH R, UNPUBLISHED
[4]  
Bulirsch R., 1971, MEHRZIELMETHODE NUME
[5]   MODIFIED NEWTON METHOD FOR SOLUTION OF ILL-CONDITIONED SYSTEMS OF NONLINEAR EQUATIONS WITH APPLICATION TO MULTIPLE SHOOTING [J].
DEUFLHARD, P .
NUMERISCHE MATHEMATIK, 1974, 22 (04) :289-315
[6]  
DEUFLHARD P, 1975, OPTIMIZATION OPTIMAL, V477
[7]   Implicit functions and their differentials in general analysis [J].
Hilderbrannt, T. H. ;
Graves, Lawrence M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1927, 29 (1-4) :127-153
[8]   MODELLING OF CHEMICAL REACTORS-X MULTIPLE SOLUTIONS OF ENTHALPY AND MASS BALANCES FOR A CATALYTIC REACTION WITHIN A POROUS CATALYST PARTICLE [J].
HLAVACEK, V ;
MAREK, M ;
KUBICEK, M .
CHEMICAL ENGINEERING SCIENCE, 1968, 23 (09) :1083-&
[9]  
HUSSELS HG, 1973, THESIS U KOLN
[10]  
Keller JB., 1969, BIFURCATION THEORY N