NUMERICAL COMPUTATION OF BRANCH POINTS IN ORDINARY DIFFERENTIAL-EQUATIONS

被引:50
作者
SEYDEL, R
机构
[1] Mathematisches Institut, Technische Universität München, München, D-8000
关键词
Subject Classifications: AMS (MOS): 65L10; CR:; 5.17;
D O I
10.1007/BF01397649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the computation of branch points in ordinary differential equations. A direct numerical method is presented which requires the solution of only one boundary value problem. The method handles the general case of branching from a nontrivial solution which is a-priori unknown. A testfunction is proposed which may indicate branching if used in continuation methods. Several real-life problems demonstrate the procedure. © 1979 Springer-Verlag.
引用
收藏
页码:51 / 68
页数:18
相关论文
共 24 条
[11]  
KOSLOWSKI R, 1975, THESIS U KOLN
[12]   SOLUTION OF NONLINEAR BOUNDARY-VALUE PROBLEMS .9. EVALUATION OF BRANCHING POINTS BASED ON DIFFERENTIATION WITH RESPECT TO BOUNDARY-CONDITIONS [J].
KUBICEK, M ;
HLAVACEK, V .
CHEMICAL ENGINEERING SCIENCE, 1975, 30 (11) :1439-1440
[13]   NUMERICAL-SOLUTION OF BIFURCATION PROBLEMS FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
LANGFORD, WF .
NUMERISCHE MATHEMATIK, 1977, 28 (02) :171-190
[14]   EXISTENCE AND BIFURCATION THEOREMS FOR GINZBURG-LANDAU EQUATIONS [J].
ODEH, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (12) :2351-+
[15]  
PIMBLEY G, 1969, LECTURE NOTES, V104
[16]  
Poincare H, 1885, ACTA MATH, V7, P259, DOI DOI 10.1007/BF02402204
[17]  
RENTROP P, 1973, THESIS U KOLN
[18]  
SEYDEL R, 1977, 7736 TU MUNCH I MATH
[19]   BRANCHING OF SOLUTIONS OF NONLINEAR EQUATIONS [J].
STAKGOLD, I .
SIAM REVIEW, 1971, 13 (03) :289-&
[20]  
STOER J, 1973, EINFUHRUNG NUMERISCH, V114