THE EXTENDED LINEAR COMPLEMENTARITY-PROBLEM

被引:62
作者
MANGASARIAN, OL [1 ]
PANG, JS [1 ]
机构
[1] JOHNS HOPKINS UNIV,DEPT MATH SCI,BALTIMORE,MD 21218
关键词
COMPLEMENTARITY PROBLEMS; MONOTONICITY; ERROR BOUND; BILINEAR PROGRAM;
D O I
10.1137/S0895479893262734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the bilinear objective function under a monotonicity assumption, the polyhedrality of the solution set of a monotone XLCP, and an error bound result for a nondegenerate XLCP. We also present a finite, sequential linear programming algorithm for solving the nonmonotone XLCP.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 17 条
[1]  
Bennett K. P., 1993, Computational Optimization and Applications, V2, P207, DOI 10.1007/BF01299449
[2]  
BONNANS JF, 1993, UNPUB CONVERGENCE IN
[3]  
COTTLE RW, 1992, LINEAR COMPLEMENTARY
[4]  
DEMOOR B, 1988, MATH CONCEPTS TECHNI
[5]  
Frank M., 1956, NAV RES LOG, V3, P95, DOI 10.1002/nav.3800030109
[6]  
GOWDA MS, 1994, EXTENDED LINEAR COMP
[7]  
GULER O, IN PRESS MATH OPER R
[8]   ON APPROXIMATE SOLUTIONS OF SYSTEMS OF LINEAR INEQUALITIES [J].
HOFFMAN, AJ .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (04) :263-265
[9]   ERROR BOUND AND CONVERGENCE ANALYSIS OF MATRIX SPLITTING ALGORITHMS FOR THE AFFINE VARIATIONAL INEQUALITY PROBLEM [J].
Luo, Zhi-Quan ;
Tseng, Paul .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) :43-54
[10]   ERROR-BOUNDS FOR ANALYTIC SYSTEMS AND THEIR APPLICATIONS [J].
LUO, ZQ ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1994, 67 (01) :1-28