NATURAL ENERGY DECOMPOSITION ANALYSIS - AN ENERGY PARTITIONING PROCEDURE FOR MOLECULAR-INTERACTIONS WITH APPLICATION TO WEAK HYDROGEN-BONDING, STRONG IONIC, AND MODERATE DONOR-ACCEPTOR INTERACTIONS

被引:420
作者
GLENDENING, ED [1 ]
STREITWIESER, A [1 ]
机构
[1] UNIV CALIF BERKELEY, DEPT CHEM, BERKELEY, CA 94720 USA
关键词
D O I
10.1063/1.466432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a procedure for partitioning the Hartree-Fock self-consistent-field (SCF) interaction energy into electrostatic, charge transfer, and deformation components. The natural bond orbital (NBO) approach of Weinhold and co-workers is employed to construct intermediate supermolecule and fragment wave functions that satisfy the Pauli exclusion principle, thereby avoiding the principal deficiency of the popular Kitaura-Morokuma energy decomposition scheme. The function counterpoise method of Boys and Bernardi enters the procedure naturally, providing an estimate of basis set superposition error (BSSE). We find that the energy components exhibit little basis set dependence when BSSE is small. Applications are presented for several representative molecular and ion complexes: the weak hydrogen bond of the water dimer, the strong ionic interaction of the alkali metal hydrides, and the moderate donor-acceptor interactions of BH3NH3 and BH3CO. Electrostatic interaction dominates the long-range region of the potential energy surface and charge transfer is strongly stabilizing for fragments within van der Waals contact. The repulsive interaction in the short range region of the potential arises from deformation as the fragment wave functions distort to avoid significant interpenetration.
引用
收藏
页码:2900 / 2909
页数:10
相关论文
共 51 条
[11]   WEAK-INTERACTIONS BETWEEN SMALL SYSTEMS - MODELS FOR STUDYING THE NATURE OF INTERMOLECULAR FORCES AND CHALLENGING PROBLEMS FOR ABINITIO CALCULATIONS [J].
CHALASINSKI, G ;
GUTOWSKI, M .
CHEMICAL REVIEWS, 1988, 88 (06) :943-962
[12]   EFFICIENT DIFFUSE FUNCTION-AUGMENTED BASIS SETS FOR ANION CALCULATIONS. III. THE 3-21+G BASIS SET FOR FIRST-ROW ELEMENTS, LI-F [J].
CLARK, T ;
CHANDRASEKHAR, J ;
SPITZNAGEL, GW ;
SCHLEYER, PV .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (03) :294-301
[13]   COMPARISON OF MOROKUMA AND PERTURBATION-THEORY APPROACHES TO DECOMPOSITION OF INTERACTION ENERGY - (NH4)+ ... NH3 [J].
CYBULSKI, SM ;
SCHEINER, S .
CHEMICAL PHYSICS LETTERS, 1990, 166 (01) :57-64
[14]  
Dunning Jr TH, 1977, MODERN THEORETICAL C, V3, P1
[18]   INTERMOLECULAR ELECTRICAL INTERACTION - A KEY INGREDIENT IN HYDROGEN-BONDING [J].
DYKSTRA, CE .
ACCOUNTS OF CHEMICAL RESEARCH, 1988, 21 (10) :355-361
[19]   LOCALIZED ATOMIC AND MOLECULAR ORBITALS [J].
EDMISTON, C ;
RUEDENBERG, K .
REVIEWS OF MODERN PHYSICS, 1963, 35 (03) :457-&
[20]   THE USE OF SYSTEMATIC SEQUENCES OF WAVE-FUNCTIONS FOR ESTIMATING THE COMPLETE BASIS SET, FULL CONFIGURATION-INTERACTION LIMIT IN WATER [J].
FELLER, D .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (09) :7059-7071