RELATIVISTIC CRYSTALLOGRAPHIC POINT GROUPS IN 2 DIMENSIONS

被引:12
作者
JANNER, A
ASCHER, E
机构
[1] Instituut voor theoretische Fysica, Katholieke Universiteit, Nijmegen
[2] Battelle Institute, Advanced Studies Center, Carouge-Genéve
来源
PHYSICA | 1969年 / 45卷 / 01期
关键词
D O I
10.1016/0031-8914(69)90062-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-dimensional relativistic point groups are investigated and various equivalence classes of them are explicitly given. It is shown that every two-dimensional relativistic point group can always be generated by at most three elements (the total inversion, a proper Lorentz transformation of infinite order, and a mirror, i.e an improper Lorentz transformation). There are 7 abstract point groups (C1, C2, C∞, D2, D∞, C∞ × C2 and D∞ × C2) divided into an infinite number of geometric (or R- equivalent) and arithmetic (or Z-equivalent) crystal classes, which are indicated. The relativistic geometric crystal classes (conjugated crystallographic subgroups of the Lorentz group) are also given. All elements of GL(2,Z) that can be interpreted as crystallographic transformations of the Minkowskian metric space are discussed. The rôle of point group symmetry in physical systems having a crystallographic structure in space and time is considered and the importance of point groups for recognizing such systems in nature is underlined. © 1969.
引用
收藏
页码:67 / &
相关论文
共 10 条
[1]  
ASCHER E, 1965, HELV PHYS ACTA, V38, P551
[2]  
BUERGER MJ, 1956, ELEMENTARY CRYSTALLO, pCH10
[3]   WORLD-STRUCTURE AND NON-EUCLIDEAN HONEYCOMBS [J].
COXETER, HSM ;
WHITROW, GJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1950, 201 (1066) :417-437
[4]  
DICKSON LE, 1957, INTRODUCTION THEORY
[5]  
FAST G, NONEQUIVALENT 4 DIME
[6]   BRAVAIS CLASSES OF 2-DIMENSIONAL RELATIVISTIC LATTICES [J].
JANNER, A ;
ASCHER, E .
PHYSICA, 1969, 45 (01) :33-&
[7]   CRYSTALLOGRAPHIC GROUPS IN SPACE AND TIME .I. GENERAL DEFINITIONS AND BASIC PROPERTIES [J].
JANSSEN, T ;
JANNER, A ;
ASCHER, E .
PHYSICA, 1969, 41 (04) :541-&
[8]   CRYSTALLOGRAPHIC GROUPS IN SPACE AND TIME .2. CENTRAL EXTENSIONS [J].
JANSSEN, T ;
JANNER, A ;
ASCHER, E .
PHYSICA, 1969, 42 (01) :41-&
[9]   CRYSTALLOGRAPHIC GROUPS IN SPACE AND TIME .3. 4-DIMENSIONAL EUCLIDEAN CRYSTAL CLASSES CORRESPONDING TO GENERALIZED MAGNETIC POINT GROUPS [J].
JANSSEN, T .
PHYSICA, 1969, 42 (01) :71-&
[10]   DISCRETE SPACE-TIME AND INTEGRAL LORENTZ TRANSFORMATIONS [J].
SCHILD, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (01) :29-47