HOW TO CONSTRUCT FINITE-DIMENSIONAL BI-HAMILTONIAN SYSTEMS FROM SOLITON-EQUATIONS - JACOBI INTEGRABLE POTENTIALS

被引:48
作者
ANTONOWICZ, M [1 ]
RAUCHWOJCIECHOWSKI, S [1 ]
机构
[1] LINKOPING UNIV,DEPT MATH,S-58183 LINKOPING,SWEDEN
关键词
D O I
10.1063/1.529632
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A systematic method of constructing finite-dimensional integrable systems starting from a bi-Hamiltonian hierarchy of soliton equations is introduced. The existence of two Hamiltonian structures of the hierarchy leads to a bi-Hamiltonian formulation of the resulting finite-dimensional systems. The case of coupled KdV hierarchies is studied in detail. A surprising connection with separable Jacobi potentials is uncovered and described.
引用
收藏
页码:2115 / 2125
页数:11
相关论文
共 22 条
[1]   FACTORIZATION OF ENERGY-DEPENDENT SCHRODINGER-OPERATORS - MIURA MAPS AND MODIFIED SYSTEMS [J].
ANTONOWICZ, M ;
FORDY, AP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (03) :465-486
[2]   CONSTRAINED FLOWS OF INTEGRABLE PDES AND BI-HAMILTONIAN STRUCTURE OF THE GARNIER SYSTEM [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1990, 147 (8-9) :455-462
[3]   COUPLED KDV EQUATIONS WITH MULTI-HAMILTONIAN STRUCTURES [J].
ANTONOWICZ, M ;
FORDY, AP .
PHYSICA D, 1987, 28 (03) :345-357
[4]   INTEGRABLE STATIONARY FLOWS - MIURA MAPS AND BI-HAMILTONIAN STRUCTURES [J].
ANTONOWICZ, M ;
FORDY, AP ;
WOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1987, 124 (03) :143-150
[5]  
BOGOYAVLENSKII OI, 1976, FUNCT ANAL APPL, V10, P8
[6]  
Cao C.W., 1987, HENAN SCI, V5, P1
[7]   COMPLETELY INTEGRABLE CLASS OF MECHANICAL SYSTEMS CONNECTED WITH KORTEWEG-DE VRIES AND MULTICOMPONENT SCHRODINGER EQUATIONS [J].
CHOODNOVSKY, DV ;
CHOODNOVSKY, GV .
LETTERE AL NUOVO CIMENTO, 1978, 22 (02) :47-51
[8]   FACTORIZATION OF OPERATORS .2. [J].
FORDY, AP ;
GIBBONS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (06) :1170-1175
[9]  
Garnier R., 1919, REND CIRC MAT PALERM, V43, P155, DOI 10.1007/BF03014668
[10]  
JACOBI CG, 1884, VORLESUNGEN DYNAMIK, P220