PATTERN-FORMATION IN REACTION DIFFUSION-SYSTEMS WITH FINITE GEOMETRY

被引:4
作者
BORZI, C
WIO, H
机构
[1] CTR ATOM BARILOCHE,RA-8400 BARILOCHE,RIO NEGRO,ARGENTINA
[2] INST FIS LIQUIDOS & SISTEMAS BIOL,RA-1900 LA PLATA,ARGENTINA
[3] COMIS NACL ENERGIA ATOM,CAE,IPQ,RA-1429 BUENOS AIRES,ARGENTINA
关键词
D O I
10.1016/0375-9601(91)90771-Y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the one-component one-dimensional reaction-diffusion equation through a simple inverse method. We confine the system and fix the boundary conditions so as to induce pattern formation. We analyze the stability of those patterns. Our goal is to get information about the reaction term from our previous knowledge of the pattern.
引用
收藏
页码:247 / 250
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 1991, MATH BIOL
[2]   STABILITY OF INHOMOGENEOUS STATIONARY STATES FOR THE HOT-SPOT MODEL OF A SUPERCONDUCTING MICROBRIDGE [J].
BEDEAUX, D ;
MAZUR, P .
PHYSICA A, 1981, 105 (1-2) :1-30
[3]   INVERSE SOLUTION FOR SOME TRAVELING-WAVE REACTION DIFFUSION-PROBLEMS [J].
BORZI, C ;
FRISCH, HL ;
GIANOTTI, R ;
PERCUS, JK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4823-4830
[4]  
FIFE PC, 1979, LECTURE NOTES BIOMAT, V88
[5]  
Kamke E., 1959, DIFFERENTIALGLEICHUN
[6]  
Kolmogorov AN, 1937, B MGU A, V1, P1, DOI DOI 10.1016/j.jde.2006.04.010
[7]   AN ELECTROTHERMAL INSTABILITY IN A CONDUCTING WIRE - HOMOGENEOUS AND INHOMOGENEOUS STATIONARY STATES FOR AN EXACTLY SOLVABLE MODEL [J].
MAZUR, P ;
BEDEAUX, D .
JOURNAL OF STATISTICAL PHYSICS, 1981, 24 (01) :215-233
[8]  
MIKHAILOV AS, 1990, F SYNERGETICS, V1
[9]  
Nicolis G., 1977, SELF ORG NONEQUILIBR
[10]   CHEMICAL REACTION MODELS FOR NONEQUILIBRIUM PHASE-TRANSITIONS [J].
SCHLOGL, F .
ZEITSCHRIFT FUR PHYSIK, 1972, 253 (02) :147-&