ERROR ANALYSIS OF UPDATE METHODS FOR THE SYMMETRICAL EIGENVALUE PROBLEM

被引:18
作者
BARLOW, JL [1 ]
机构
[1] OAK RIDGE NATL LAB,OAK RIDGE,TN 37831
关键词
DIVIDE-AND-CONQUER; SPECTRAL FUNCTION; EIGENVALUE UPDATE; TOEPLITZ MATRICES;
D O I
10.1137/0614042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cuppen's divide-and-conquer method for solving the symmetric tridiagonal eigenvalue problem has been shown to be very efficient on shared memory multiprocessor architectures. In this paper, some error analysis issues concerning this method are resolved. The method is shown to be stable and a slightly different stopping criterion for finding the zeroes of the spectral function is suggested. These error analysis results extend to general update methods for the symmetric eigenvalue problem. That is, good backward error bounds are obtained for methods to find the eigenvalues and eigenvectors of A + rhoww(T), given those of A. These results can also be used to analyze a new fast method for finding the eigenvalues of banded, symmetric Toeplitz matrices.
引用
收藏
页码:598 / 618
页数:21
相关论文
共 26 条
[11]   OPTIMAL ERROR BOUNDS FOR NEWTON-KANTOROVICH THEOREM [J].
GRAGG, WB ;
TAPIA, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (01) :10-13
[12]  
HANDY SL, IN PRESS SIAM J MATR
[13]  
HANDY SL, 1992, CS9227 PENNS STAT U
[14]  
HANDY SL, 1990, THESIS PENNSYLVANIA
[15]   SOLVING THE SYMMETRIC TRIDIAGONAL EIGENVALUE PROBLEM ON THE HYPERCUBE [J].
IPSEN, ICF ;
JESSUP, ER .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (02) :203-229
[16]  
JESSUP E, 1989, THESIS YALE U NEW HA
[17]   IMPROVING THE ACCURACY OF INVERSE ITERATION [J].
JESSUP, ER ;
IPSEN, ICF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (02) :550-572
[18]  
JESSUP ER, 1987, MCSTM102 ARNL MATH C
[19]  
JESSUP ER, 1990, YALEUDCSRR767 YAL U
[20]  
KAHAN W, 1990, HOUSEHOLDER S, V10