METRIC REGULARITY, TANGENT SETS, AND 2ND-ORDER OPTIMALITY CONDITIONS

被引:193
作者
COMINETTI, R
机构
[1] Département de Mathématiques Appliquées, Université Blaise Pascal (Clermont II), Aubière, 63170
关键词
D O I
10.1007/BF01445166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A strong regularity theorem is proved, which shows that the usual constraint qualification conditions ensuring the regularity of the set-valued maps expressing feasibility in optimization problems, are in fact minimal assumptions. These results are then used to derive calculus rules for second-order tangent sets, allowing us in turn to obtain a second-order (Lagrangian) necessary condition for optimality which completes the usual one of positive semidefiniteness on the Hessian of the Lagrangian function. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:265 / 287
页数:23
相关论文
共 28 条
[21]  
Robinson S. M., 1976, SIAM Journal on Numerical Analysis, V13, P497, DOI 10.1137/0713043
[22]   REGULARITY AND STABILITY FOR CONVEX MULTIVALUED FUNCTIONS. [J].
Robinson, Stephen M. .
Mathematics of Operations Research, 1976, 1 (02) :130-143
[23]   STABILITY THEORY FOR SYSTEMS OF INEQUALITIES .1. LINEAR-SYSTEMS [J].
ROBINSON, SM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (05) :754-769
[24]   LIPSCHITZIAN PROPERTIES OF MULTIFUNCTIONS [J].
ROCKAFELLAR, RT .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (08) :867-885
[25]  
ROCKAFELLAR RT, 1987, UNPUB 1ST 2ND ORDER
[26]  
TERPOLILLI P, 1982, THESIS U PAU PAYES A
[27]  
Ursescu C., 1975, CZECH MATH J, V25, P100
[28]  
[No title captured]