SPECIAL CONFORMAL KILLING VECTOR SPACE-TIMES AND SYMMETRY INHERITANCE

被引:71
作者
COLEY, AA [1 ]
TUPPER, BOJ [1 ]
机构
[1] UNIV NEW BRUNSWICK,DEPT MATH & STAT,FREDERICTON E3B 5A3,NB,CANADA
关键词
D O I
10.1063/1.528492
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2616 / 2625
页数:10
相关论文
共 22 条
[11]  
MAARTENS R, 1986, CLASSICAL QUANT GRAV, V3, P1005, DOI 10.1088/0264-9381/3/5/027
[12]   KINEMATIC AND DYNAMIC PROPERTIES OF CONFORMAL KILLING VECTORS IN ANISOTROPIC FLUIDS [J].
MAARTENS, R ;
MASON, DP ;
TSAMPARLIS, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2987-2994
[13]   SPACELIKE CONFORMAL KILLING VECTORS AND SPACELIKE CONGRUENCES [J].
MASON, DP ;
TSAMPARLIS, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (11) :2881-2901
[14]   KILLING VECTORS IN EMPTY SPACE ALGEBRAICALLY SPECIAL METRICS .1. [J].
HELD, A .
GENERAL RELATIVITY AND GRAVITATION, 1976, 7 (02) :177-198
[15]  
Petrov A Z, 1969, EINSTEIN SPACES
[16]  
SINYUKOV NS, 1957, SI ANN
[17]  
STEPHANI H, 1982, GENERAL RELATIVITY
[18]  
TAUB AH, 1972, GENERAL RELATIVITY P
[20]   KILLING VECTOR FIELDS AND EINSTEIN-MAXWELL FIELD EQUATIONS WITH PERFECT FLUID SOURCE [J].
WAINWRIGHT, J ;
YAREMOVICZ, PEA .
GENERAL RELATIVITY AND GRAVITATION, 1976, 7 (04) :345-359