GRID MODIFICATION FOR THE WAVE-EQUATION WITH ATTENUATION

被引:8
作者
YANG, DQ
机构
[1] Department of Mathematics, Purdue University, West Lafayette, Indiana
关键词
D O I
10.1007/s002110050034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The wave equation with attenuation due to a linear friction is approximated by a new mixed finite element method which allows one to use different grids and basis functions at different times when necessary. This method enables one to track sharp moving wave fronts more efficiently and accurately. Error estimates with optimal convergent rates are established. Unconditional stability is also proved for this method.
引用
收藏
页码:391 / 401
页数:11
相关论文
共 29 条
[1]   2ND-ORDER FINITE-ELEMENT APPROXIMATIONS AND A POSTERIORI ERROR ESTIMATION FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :183-198
[2]   MIXED FINITE-ELEMENT METHODS FOR ELLIPTIC PROBLEMS [J].
ARNOLD, DN .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 82 (1-3) :281-300
[3]   A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY [J].
ARNOLD, DN ;
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :1-22
[4]  
Babuska I., 1986, ACCURACY ESTIMATES A
[5]   ERROR ESTIMATES FOR FINITE-ELEMENT METHODS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :564-576
[6]   THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .2. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE APPROACH [J].
BIETERMAN, M ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1982, 40 (03) :373-406
[7]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[8]  
BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
[9]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[10]   A PRIORI ESTIMATES FOR MIXED FINITE-ELEMENT METHODS FOR THE WAVE-EQUATION [J].
COWSAR, LC ;
DUPONT, TF ;
WHEELER, MF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 82 (1-3) :205-222