CONVERGENCE OF THE FRANCIS SHIFTED QR ALGORITHM ON NORMAL MATRICES

被引:9
作者
BATTERSON, S
机构
[1] Department of Mathematics, Computer Science Emory University Atlanta
关键词
D O I
10.1016/0024-3795(94)90010-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine global convergence properties of the Francis shifted QR algorithm on real, normal Hessenberg matrices. It is shown that the algorithm will almost always produce a decoupling. Eigenvalue conditions are identified which assure decoupling. In particular a sufficient condition is that a normal matrix has more than four real eigenvalues.
引用
收藏
页码:181 / 195
页数:15
相关论文
共 11 条
[1]   CONVERGENCE OF THE SHIFTED QR ALGORITHM ON 3 X-3 NORMAL MATRICES [J].
BATTERSON, S .
NUMERISCHE MATHEMATIK, 1990, 58 (04) :341-352
[2]   LINEAR CONVERGENCE IN THE SHIFTED QR ALGORITHM [J].
BATTERSON, S ;
DAY, D .
MATHEMATICS OF COMPUTATION, 1992, 59 (199) :141-151
[3]  
BATTERSON S, 1993, P SMALEFEST, P368
[4]  
ERXIONG J, 1992, LINEAR ALGEBRA APPL, V171, P121
[5]   QR TRANSFORMATION - A UNITARY ANALOG TO LR TRANSFORMATION .1. [J].
FRANCIS, J .
COMPUTER JOURNAL, 1961, 4 :265-&
[6]  
Francis J.G.F., 1962, COMPUT J, V4, P332, DOI DOI 10.1093/COMJN1/4.4.332
[7]  
GOLUB GH, 1989, MATRIX COMPUTATIONS
[8]  
Hironaka H., 1974, P S PURE MATH, V29, P165
[9]  
Horn RA, 2012, MATRIX ANAL, DOI DOI 10.1017/CBO9781139020411
[10]  
PARLETT B., 1980, SYMMETRIC EIGENVALUE