CONVERGENCE OF THE SHIFTED QR ALGORITHM ON 3 X-3 NORMAL MATRICES

被引:11
作者
BATTERSON, S
机构
[1] Department of Mathematics, Emory University, Atlanta, 30322, GA
关键词
Subject classifications: AMS(MOS): 65F15; CR:; G1.3;
D O I
10.1007/BF01385629
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the convergence properties of the shifted QR algorithm on 3×3 normal, Hessenberg matrices. The algorithm is viewed as an iteration on one dimensional subspaces. A class of matrices is characterized for which HQR2 is unable to approximate a solution. © 1990 Springer-Verlag.
引用
收藏
页码:341 / 352
页数:12
相关论文
共 11 条
[1]  
BATTERSON S, 1990, MATH COMPUT, V55, P169, DOI 10.1090/S0025-5718-1990-1023041-4
[2]   QR TRANSFORMATION - A UNITARY ANALOG TO LR TRANSFORMATION .1. [J].
FRANCIS, J .
COMPUTER JOURNAL, 1961, 4 :265-&
[3]  
Francis J.G.F., 1962, COMPUT J, V4, P332, DOI DOI 10.1093/COMJN1/4.4.332
[4]  
Golub G.H., 1996, MATH GAZ, VThird
[5]  
Horn R.A, 2012, MATRIX ANAL, V2nd ed.
[6]   HANDBOOK SERIES LINEAR ALGEBRA - QR-ALGORITHM FOR REAL HESSENBERG MATRICES [J].
MARTIN, RS ;
PETERS, G .
NUMERISCHE MATHEMATIK, 1970, 14 (03) :219-&
[7]   GLOBAL CONVERGENCE OF BASIC QR ALGORITHM ON HESSENBERG MATRICES [J].
PARLETT, B .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :803-&
[8]  
PARLETT B, 1969, INFORMATION PROCESSI, V68, P114
[9]   EIGENVECTORS OF REAL AND COMPLEX MATRICES BY LR AND QR TRIANGULARIZATIONS [J].
PETERS, G ;
WILKINSO.JH .
NUMERISCHE MATHEMATIK, 1970, 16 (03) :181-&
[10]  
WATKINS D, CONVERGENCE ALGORITH