EIGENVECTORS OF REAL AND COMPLEX MATRICES BY LR AND QR TRIANGULARIZATIONS

被引:42
作者
PETERS, G
WILKINSO.JH
机构
关键词
D O I
10.1007/BF02219772
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:181 / &
相关论文
共 9 条
[1]  
DEKKER TJ, 1968, MATHEMATICAL CTR TRA, P23
[2]   QR TRANSFORMATION - A UNITARY ANALOG TO LR TRANSFORMATION .1. [J].
FRANCIS, J .
COMPUTER JOURNAL, 1961, 4 :265-&
[3]  
Francis J.G.F., 1962, COMPUT J, V4, P332, DOI DOI 10.1093/COMJN1/4.4.332
[4]   SIMILARITY REDUCTION OF A GENERAL MATRIX TO HESSENBERG FORM [J].
MARTIN, RS ;
WILKINSO.JH .
NUMERISCHE MATHEMATIK, 1968, 12 (05) :349-&
[5]   HANDBOOK SERIES LINEAR ALGEBRA - QR-ALGORITHM FOR REAL HESSENBERG MATRICES [J].
MARTIN, RS ;
PETERS, G .
NUMERISCHE MATHEMATIK, 1970, 14 (03) :219-&
[6]   MODIFIED LR ALGORITHM FOR COMPLEX HESSENBERG MATRICES [J].
MARTIN, RS ;
WILKINS.JH .
NUMERISCHE MATHEMATIK, 1968, 12 (05) :369-&
[7]   HANDBOOK SERIES LINEAR ALGEBRA - BALANCING A MATRIX FOR CALCULATION OF EIGENVALUES AND EIGENVECTORS [J].
PARLETT, BN ;
REINSCH, C .
NUMERISCHE MATHEMATIK, 1969, 13 (04) :293-&
[8]  
RUTISHAUSER H, 1958, NBS49 APPL MATH SER
[9]  
Wilkinson J. H., 1965, ALGEBRAIC EIGENVALUE