UNIVERSALITY IN THE THOMAS-FERMI-VONWEIZSACKER MODEL OF ATOMS AND MOLECULES

被引:19
作者
SOLOVEJ, JP [1 ]
机构
[1] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08544
关键词
D O I
10.1007/BF02097106
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. The main result is to prove universality of the structure of very large atoms and molecules, i.e., proving that the structure converges as the nuclear charges go to infinity. Furthermore we uniquely characterize the limit density as the solution to a renormalized TFW-equation. This is achieved by characterizing the strong singularities of solutions to the non-linear TFW-system. © 1990 Springer-Verlag.
引用
收藏
页码:561 / 598
页数:38
相关论文
共 20 条
[11]   THOMAS-FERMI AND RELATED THEORIES OF ATOMS AND MOLECULES [J].
LIEB, EH .
REVIEWS OF MODERN PHYSICS, 1981, 53 (04) :603-641
[12]  
Nirenberg L., 1959, ANN SCUOLA NORM-SCI, V13, P115
[13]  
ROTHER W, 1985, BAYREUTH MATH SCHR, V18, P39
[14]  
SECO LA, IN PRESS COMMUN MATH
[15]   ON THE LEADING ENERGY CORRECTION FOR THE STATISTICAL-MODEL OF THE ATOM - INTERACTING CASE [J].
SIEDENTOP, H ;
WEIKARD, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (03) :471-490
[16]   ON THE LEADING CORRECTION OF THE THOMAS-FERMI MODEL - LOWER BOUND [J].
SIEDENTOP, H ;
WEIKARD, R ;
MULLER, AMK .
INVENTIONES MATHEMATICAE, 1989, 97 (01) :159-193
[17]  
SOLOVEJ JP, 1989, THESIS PRINCETON
[18]   Asymptotic Integration of the Differential Equation of the Thomas-Fermi's Atom [J].
Sommerfeld, A. .
ZEITSCHRIFT FUR PHYSIK, 1932, 78 (5-6) :283-308
[19]   ACCURATE SOLUTION OF THE THOMAS-FERMI-DIRAC-WEIZSACKER VARIATIONAL EQUATIONS FOR THE CASE OF NEUTRAL ATOMS AND POSITIVE-IONS [J].
STICH, W ;
GROSS, EKU ;
MALZACHER, P ;
DREIZLER, RM .
ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1982, 309 (01) :5-11