GENERALIZED M-ESTIMATORS FOR ERRORS-IN-VARIABLES REGRESSION

被引:28
作者
CHENG, CL [1 ]
VANNESS, JW [1 ]
机构
[1] UNIV TEXAS,PROGRAM MATH SCI,RICHARDSON,TX 75083
关键词
ERRORS-IN-VARIABLES REGRESSION; MEASUREMENT ERROR MODEL; STRUCTURAL MODEL; ROBUST STATISTICS; FISHER CONSISTENCY; GENERALIZED M-ESTIMATES;
D O I
10.1214/aos/1176348528
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper discusses robust estimation for structural errors-in-variables (EV) linear regression models. Such models have important applications in many areas. Under certain assumptions, including normality, the maximum likelihood estimates for the EV model are provided by orthogonal regression (OR) which minimizes the orthogonal distance from the regression line to the data points instead of the vertical distance used in ordinary regression. OR is very sensitive to contamination and thus efficient robust procedures are needed. This paper examines the theoretical properties of bounded influence estimators for univariate Gaussian EV models using a generalized M-estimate approach. The results include Fisher consistency, most B-robust estimators and the OR version of Hampel's optimality problem.
引用
收藏
页码:385 / 397
页数:13
相关论文
共 25 条
[21]   ASYMPTOTIC-BEHAVIOR OF GENERAL M-ESTIMATES FOR REGRESSION AND SCALE WITH RANDOM CARRIERS [J].
MARONNA, RA ;
YOHAI, VJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 58 (01) :7-20
[22]   MIN-MAX BIAS ROBUST REGRESSION [J].
MARTIN, RD ;
YOHAI, VJ ;
ZAMAR, RH .
ANNALS OF STATISTICS, 1989, 17 (04) :1608-1630
[23]  
RONCHETTI E, 1985, Z WAHRSCH VERW GEBIE, V68, P503
[24]  
Zamar R. H., 1985, THESIS U WASHINGTON
[25]   ROBUST ESTIMATION IN THE ERRORS-IN-VARIABLES MODEL [J].
ZAMAR, RH .
BIOMETRIKA, 1989, 76 (01) :149-160