DISCRETIZED VERSIONS OF NEWTON TYPE ITERATIVE METHODS FOR CONFORMAL MAPPING

被引:11
作者
WEGMANN, R [1 ]
机构
[1] MAX PLANCK INST ASTROPHYS,W-8046 GARCHING,GERMANY
关键词
analysis of convergence; Newton type methods; Numerical conformal mapping;
D O I
10.1016/0377-0427(90)90358-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that for nearly circular regions discretized versions of the Newton type methods of Wegmann (1978) and Hübner (1986) converge locally to fixed points. Convergence is linear. The rates can be determined approximately for several standard regions. The dominant operator acts only on a subspace of high-order harmonics. Therefore under conditions of smoothness and/or symmetry convergence can be much faster. The fixed points satisfy a discrete version of Lavrentev's variational principle. Therefore the resulting approximations for conformal mapping are essentially as accurate as Wittich's approximation for the conjugation operation. © 1990.
引用
收藏
页码:207 / 224
页数:18
相关论文
共 16 条
[1]  
DIEUDONNE J, 1960, F MODERN ANAL
[2]  
Gaier D., 1964, KONSTRUKTIVE METHODE
[3]  
GUTKNECHT MH, 1977, MATH COMPUT, V31, P478, DOI 10.1090/S0025-5718-1977-0440021-1
[4]   NUMERICAL CONFORMAL MAPPING METHODS BASED ON FUNCTION CONJUGATION [J].
GUTKNECHT, MH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (1-2) :31-77
[5]   FAST FOURIER METHODS IN COMPUTATIONAL COMPLEX ANALYSIS [J].
HENRICI, P .
SIAM REVIEW, 1979, 21 (04) :481-527
[6]   THE NEWTON METHOD FOR SOLVING THE THEODORSEN INTEGRAL-EQUATION [J].
HUBNER, O .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (1-2) :19-30
[7]  
LAWRENTJEV MA, 1967, METHODEN KOMPLEXEN F
[8]  
Ortega J.M., 1970, OCLC1154227410, Patent No. 1154227410
[9]  
OSTROWSKI AM, 1960, SOLUTION EQUATIONS E
[10]  
Song E.J., 1988, THESIS NAGOYA U