We consider the asymptotic behaviour of long pulse high current Compton free electron laser oscillators. It is known that if the current is high enough and the cavity losses low enough, sideband instabilities and non-linear mode couplings eventually lead to a strong broadening of the radiated spectrum, and to a strong efficiency enhancement. In this ''post-sideband'' regime, the electron dynamics along the wiggler is intrinsically stochastic, and the efficiency is due to chaotic diffusion of the electrons toward lower energies, rather than to standard synchrotron oscillations. This results in new scaling laws for saturation properties. We have obtained simple analytical estimates for the extracted efficiency and for the spectral width, in very good agreement with numerical simulations. The infrared ELSA free electron laser at Bruyeres-le-Chatel has been used to obtain experimental evidence for these new scaling laws. In particular it has been verified that in the post-sideband regime, the ratio of the extracted efficiency to the relative spectral width is independent of the operating parameters, and close to root 3/2 as predicted by theory.