DYNAMIC MODELING AND PENALIZED LIKELIHOOD ESTIMATION FOR DISCRETE-TIME SURVIVAL-DATA

被引:28
作者
FAHRMEIR, L
机构
[1] Seminar für Statistik, Universität München, D-80539 München
关键词
DYNAMIC MODEL; GROUPED SURVIVAL DATA; HAZARD FUNCTION; PENALIZED LIKELIHOOD; POSTERIOR MODE SMOOTHING; TIME-VARYING EFFECTS;
D O I
10.1093/biomet/81.2.317
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper describes a dynamic or state-space approach for analyzing discrete time or grouped survival data. Simultaneous estimation of baseline hazard functions and of time-varying covariate effects is based on maximization of posterior densities or, equivalently, a penalized likelihood, leading to Kalman-type smoothing algorithms. Data-driven choice of unknown smoothing parameters is possible via an EM-type procedure. The methods are illustrated by applications to real data.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 21 条
[1]   A LINEAR-REGRESSION MODEL FOR THE ANALYSIS OF LIFE TIMES [J].
AALEN, OO .
STATISTICS IN MEDICINE, 1989, 8 (08) :907-925
[2]  
Anderson B. D. O., 1979, OPTIMAL FILTERING
[3]  
ARJAS E, 1987, SCAND J STAT, V14, P1
[4]  
Carter W. H., 1983, REGRESSION ANAL SURV
[7]  
FAHRMEIR L, 1992, STAT MODELLING, P85
[8]  
FAHRMEIR L, 1991, METRIKA, V38, P37, DOI DOI 10.1007/BF02613597
[9]   A DYNAMIC APPROACH TO THE STATISTICAL-ANALYSIS OF POINT-PROCESSES [J].
GAMERMAN, D .
BIOMETRIKA, 1992, 79 (01) :39-50
[10]  
GAMERMAN D, 1991, APPL STAT-J ROY ST C, V40, P63