DYNAMIC MODELING AND PENALIZED LIKELIHOOD ESTIMATION FOR DISCRETE-TIME SURVIVAL-DATA

被引:28
作者
FAHRMEIR, L
机构
[1] Seminar für Statistik, Universität München, D-80539 München
关键词
DYNAMIC MODEL; GROUPED SURVIVAL DATA; HAZARD FUNCTION; PENALIZED LIKELIHOOD; POSTERIOR MODE SMOOTHING; TIME-VARYING EFFECTS;
D O I
10.1093/biomet/81.2.317
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper describes a dynamic or state-space approach for analyzing discrete time or grouped survival data. Simultaneous estimation of baseline hazard functions and of time-varying covariate effects is based on maximization of posterior densities or, equivalently, a penalized likelihood, leading to Kalman-type smoothing algorithms. Data-driven choice of unknown smoothing parameters is possible via an EM-type procedure. The methods are illustrated by applications to real data.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 21 条
[11]   PENALIZED LIKELIHOOD FOR GENERAL SEMIPARAMETRIC REGRESSION-MODELS [J].
GREEN, PJ .
INTERNATIONAL STATISTICAL REVIEW, 1987, 55 (03) :245-259
[12]  
Hamerle A., 1989, DISKRETE MODELLE ANA
[13]  
HARVEY A, 1989, FORECASTING STRUCTUR
[14]   WEIGHTED LEAST-SQUARES ESTIMATION FOR AALEN ADDITIVE RISK MODEL [J].
HUFFER, FW ;
MCKEAGUE, IW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (413) :114-129
[15]  
KALBFLEISCH JD, 1980, STATISTICAL ANAL FAI
[16]  
KIEFER NM, 1990, PANEL DATA LABOR MAR, P97
[17]   LOGISTIC REGRESSION-ANALYSIS OF RESPONSE-TIME DATA WHERE HAZARD FUNCTION IS TIME-DEPENDENT [J].
MANTEL, N ;
HANKEY, BF .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1978, 7 (04) :333-347
[18]  
Sage AP, 1971, ESTIMATION THEORY AP
[19]   RANDOM-EFFECTS MODELS FOR SERIAL OBSERVATIONS WITH BINARY RESPONSE [J].
STIRATELLI, R ;
LAIRD, N ;
WARE, JH .
BIOMETRICS, 1984, 40 (04) :961-971
[20]  
THOMPSON WA, 1977, BIOMETRICS, V39, P141