RESONANT TRIAD INTERACTIONS IN SYMMETRICAL SYSTEMS

被引:18
作者
GUCKENHEIMER, J
MAHALOV, A
机构
[1] Cornell University, Ithaca, NY
来源
PHYSICA D | 1992年 / 54卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(92)90040-T
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse resonant triad interactions in symmetric systems. The case of coupling at quadratic order in amplitudes and the case of coupling at cubic order are considered. We study modulated travelling waves and heteroclinic cycles in amplitude equations and we discuss their stability types. We describe possible dynamical regimes and spatial patterns arising from triad interactions of long waves in rapidly rotating Hagen-Poiseuille flow.
引用
收藏
页码:267 / 310
页数:44
相关论文
共 26 条
[1]   HETEROCLINIC CYCLES AND MODULATED TRAVELING WAVES IN SYSTEMS WITH O(2) SYMMETRY [J].
ARMBRUSTER, D ;
GUCKENHEIMER, J ;
HOLMES, P .
PHYSICA D, 1988, 29 (03) :257-282
[2]   HETEROCLINIC ORBITS IN A SPHERICALLY INVARIANT SYSTEM [J].
ARMBRUSTER, D ;
CHOSSAT, P .
PHYSICA D, 1991, 50 (02) :155-176
[3]   THE DYNAMICS OF COHERENT STRUCTURES IN THE WALL REGION OF A TURBULENT BOUNDARY-LAYER [J].
AUBRY, N ;
HOLMES, P ;
LUMLEY, JL ;
STONE, E .
JOURNAL OF FLUID MECHANICS, 1988, 192 :115-173
[4]  
Bloembergen N., 1965, NONLINEAR OPTICS
[5]   LINEAR-STABILITY OF ROTATING HAGEN-POISEUILLE FLOW [J].
COTTON, FW ;
SALWEN, H .
JOURNAL OF FLUID MECHANICS, 1981, 108 (JUL) :101-125
[6]  
CRAIK A. D. D., 1985, WAVE INTERACTIONS FL
[7]   NON-LINEAR RESONANT INSTABILITY IN BOUNDARY LAYERS [J].
CRAIK, ADD .
JOURNAL OF FLUID MECHANICS, 1971, 50 (NOV29) :393-&
[8]  
Greenspan H. P., 1968, THEORY ROTATING FLUI
[9]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192
[10]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2