ALGORITHM-726 - ORTHPOL - A PACKAGE OF ROUTINES FOR GENERATING ORTHOGONAL POLYNOMIALS AND GAUSS-TYPE QUADRATURE-RULES

被引:205
作者
GAUTSCHI, W
机构
[1] Department of Computer Sciences, Purdue University, West Lafayette
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 1994年 / 20卷 / 01期
关键词
ALGORITHMS; GAUSS-TYPE QUADRATURE RULES; ORTHOGONAL POLYNOMIALS;
D O I
10.1145/174603.174605
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A collection of subroutines and examples of their uses, as well as the underlying numerical methods, are described for generating orthogonal polynomials relative to arbitrary weight functions. The object of these routines is to produce the coefficients in the three-term recurrence relation satisfied by the orthogonal polynomials. Once these are known, additional data can be generated, such as zeros of orthogonal polynomials and Gauss-type quadrature rules, for which routines are also provided.
引用
收藏
页码:21 / 62
页数:42
相关论文
共 50 条
[31]   DISCRETE APPROXIMATIONS TO SPHERICALLY SYMMETRIC DISTRIBUTIONS [J].
GAUTSCHI, W .
NUMERISCHE MATHEMATIK, 1984, 44 (01) :53-60
[32]  
GAUTSCHI W, 1986, NATO ASI SER C-MATH, V294, P205
[33]  
Gautschi W., 1986, MATH SURVEYS MONOGRA, V21, P205
[34]  
GAUTSCHI W., 1982, INT SER NUMER MATH, V57, P89
[35]  
GAUTSCHI W, 1967, SIAM J NUMER ANAL, V4, P357
[36]  
Gautschi Walter, 1993, AEQUATIONES MATH, V46, P174
[37]  
GOLUB GH, 1973, SIAM REV, V15, P318, DOI 10.1137/1015032
[38]   CALCULATION OF GAUSS QUADRATURE RULES [J].
GOLUB, GH ;
WELSCH, JH .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :221-&
[39]   THE NUMERICALLY STABLE RECONSTRUCTION OF JACOBI MATRICES FROM SPECTRAL DATA [J].
GRAGG, WB ;
HARROD, WJ .
NUMERISCHE MATHEMATIK, 1984, 44 (03) :317-335
[40]  
KAUTSKY J, 1983, LINEAR ALGEBRA APPL, V52-3, P439