A GROUP DYNAMIC-MODEL AND THE LOST GAMES DISTRIBUTION

被引:7
作者
KEMP, AW [1 ]
KEMP, CD [1 ]
机构
[1] UNIV ST ANDREWS,DEPT MATH & COMPUTAT SCI,ST ANDREWS KY16 9SS,SCOTLAND
关键词
STATE DEPENDENT PROCESS; TIME HOMOGENEOUS PROCESS; MAXIMUM LIKELIHOOD; INVERSE BINOMIAL DISTRIBUTION;
D O I
10.1080/03610929208830815
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper deals with the distribution of the size of naturally-occuring groups of individuals, where group size is determined by a birth-and-death process. A realistic new state-dependent time-homogeneous equilibrium process is put forward in which the birth rate and the death rate both approach upper asymptotes as group size increases. The outcome is a lost-games distribution. This is fitted to data on size of playgroups, using maximum-likelihood estimation, and provides a very satisfactory fit.
引用
收藏
页码:791 / 798
页数:8
相关论文
共 22 条
[11]  
MKendrick A. G., 1925, P EDINBURGH MATH SOC, V44, P98, DOI DOI 10.1017/S0013091500034428
[12]   STOCHASTIC-MODELS OF GROUPING CHANGES [J].
MORGAN, BJT .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (01) :30-57
[13]  
Neyman J., 1964, STOCHASTIC MODELS ME
[14]  
OLKIN I, 1980, PROBABILITY MODELS A
[15]   THE MULTIPLICATIVE PROCESS [J].
OTTER, R .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (02) :206-224
[16]  
SIMON HA, 1955, BIOMETRIKA, V42, P425
[17]  
STEYN HS, 1984, S AFR STAT J, V18, P29
[18]  
Takacs L., 1955, ACTA MATH ACAD SCI H, V6, P101, DOI [10.1007/BF02021270, DOI 10.1007/BF02021270]
[19]   THE INVERSE BINOMIAL-DISTRIBUTION AS A STATISTICAL-MODEL [J].
YANAGIMOTO, T .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (10) :3625-3633
[20]  
Yule G. V., 1924, Philosophical Transactions of the Royal Society London B, V213, P21