Non-standard quantum (1+1) Poincare group: A T-matrix approach

被引:28
作者
Ballesteros, A
Herranz, FJ
delOlmo, MA
Perena, CM
Santander, M
机构
[1] UNIV VALLADOLID,DEPT FIS TEOR,E-47011 VALLADOLID,SPAIN
[2] UNIV COMPLUTENSE MADRID,DEPT FIS TEOR,E-28040 MADRID,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 24期
关键词
D O I
10.1088/0305-4470/28/24/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hopf algebra dual form for the non-standard uniparametric deformation of the (1 + 1) Poincare algebra iso(1, 1) is deduced. In this framework, the quantum coordinates that generate Fun(w)(ISO(1, 1)) define an infinite dimensional Lie algebra. The T-matrix formalism is used to derive a universal R-matrix for both U(w)iso(1, 1) and Fun(w)(ISO(1, 1)). It is also shown how these results can be generalized for the triangular deformations of (1 + 1) Poincare and Galilei algebras that include a spacetime dilation generator.
引用
收藏
页码:7113 / 7125
页数:13
相关论文
共 25 条
[21]   A ASTERISK-PRODUCT ON SL(2) AND THE CORRESPONDING NONSTANDARD QUANTUM-U(SL(2)) [J].
OHN, C .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (02) :85-88
[22]  
Takhtajan L. A., 1990, NANKAI LECT MATH PHY, P69
[23]  
Vaksman LL., 1989, SOV MATH DOKL, V39, P173
[24]  
ZAKRZEWSKI S, 1995, QUANTUM GROUPS FORMA, P433
[25]  
ZAKRZEWSKY S, 1991, QUANTUM SYMMETRIES