A FUJITA TYPE GLOBAL EXISTENCE-GLOBAL NONEXISTENCE THEOREM FOR A WEAKLY COUPLED SYSTEM OF REACTION-DIFFUSION EQUATIONS

被引:43
作者
LEVINE, HA
机构
[1] Dept of Mathematics, Iowa State University, Ames, 50011, Iowa
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1991年 / 42卷 / 03期
关键词
D O I
10.1007/BF00945712
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D subset-of R(N) be a region with smooth boundary delta-D. Let p . q > 1, p, q greater-than-or-equal-to 1. We consider the system: u(t) = DELTA-u + v(p), v(t) = DELTA-v + u(q) in D x [0, infinity) with u = v = 0 in delta-D x [0, infinity) and u0, v0 nonnegative. Let gamma = max(p, q). We show that if D is R(N), a cone or the exterior of a bounded domain, then there is a number pc(D) such that (a) if (gamma + 1)/(pq - 1) > pc(D) no nontrivial global positive solutions of the system exist while (b) if (gamma + 1)/(pq - 1) < pc(D) both nontrivial global and nonglobal solutions exist. In case D is a cone or D = R(N), (a) holds with equality. An explicit formula for pc(D) is given.
引用
收藏
页码:408 / 430
页数:23
相关论文
共 14 条
[1]  
BANDLE C, 1989, T AM MATH SOC, V655, P595
[2]  
BANDLE C, 1989, Z ANGEW MATH PHYS, V40, P655
[3]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[4]  
FRIEDMAN A., 1965, PARTIAL DIFFERENTIAL
[5]  
Fujita H., 1966, J FS U TOKYO A, V16, P105
[6]  
GALAKTIONOV A, 1985, DIFFERENSIALNYE URAV, V21, P1544
[7]  
GALAKTIONOV VA, 1983, DIFF EQUAT+, V19, P1558
[8]   THE VALUE OF THE CRITICAL EXPONENT FOR REACTION-DIFFUSION EQUATIONS IN CONES [J].
LEVINE, HA ;
MEIER, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 109 (01) :73-80
[9]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288
[10]  
LEVINE HA, 1989, ISR J MATH, V67, P1