FINITE-SIZE CORRECTIONS AND SCALING DIMENSIONS OF SOLVABLE LATTICE MODELS - AN ANALYTIC METHOD

被引:62
作者
PEARCE, PA
KLUMPER, A
机构
[1] Department of Mathematics, University of Melbourne, Parkville, Vic.
关键词
D O I
10.1103/PhysRevLett.66.974
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general analytic method for calculating finite-size corrections, central charges, and scaling dimensions of solvable lattice models is presented. The approach is to solve the special functional equations or inversion identities satisfied by the commuting row transfer matrices of these lattice models at criticality. For purposes of illustration, the method is applied to calculate the central charge c = 4/5 and leading magnetic scaling dimension x = 2/15 of hard hexagons. These numbers are rational due to special values of Rogers dilogarithms.
引用
收藏
页码:974 / 977
页数:4
相关论文
共 25 条
[11]   METHOD FOR CALCULATING FINITE SIZE CORRECTIONS IN BETHE ANSATZ SYSTEMS - HEISENBERG CHAIN AND 6-VERTEX MODEL [J].
DEVEGA, HJ ;
WOYNAROVICH, F .
NUCLEAR PHYSICS B, 1985, 251 (03) :439-456
[12]   CONFORMAL-INVARIANCE, UNITARITY, AND CRITICAL EXPONENTS IN 2 DIMENSIONS [J].
FRIEDAN, D ;
QIU, Z ;
SHENKER, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (18) :1575-1578
[13]  
FRIEDAN D, 1984, VERTEX OPERATORS MAT
[14]   FINITE-SIZE CORRECTIONS FOR GROUND-STATES OF THE XXZ HEISENBERG CHAIN IN THE CRITICAL REGION [J].
HAMER, CJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (18) :1133-1137
[15]   FINITE-SIZE CORRECTIONS FOR GROUND-STATES OF THE XXZ HEISENBERG CHAIN [J].
HAMER, CJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (16) :3335-3351
[16]   SCALING DIMENSIONS AND CONFORMAL ANOMALY IN ANISOTROPIC LATTICE SPIN MODELS [J].
KIM, D ;
PEARCE, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (07) :L451-L456
[17]  
KIRILLOV AN, 1986, J PHYS A, V19, P565
[18]   AN ANALYTIC TREATMENT OF FINITE-SIZE CORRECTIONS IN THE SPIN-1 ANTIFERROMAGNETIC XXZ CHAIN [J].
KLUMPER, A ;
BATCHELOR, MT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (05) :L189-L195
[19]  
Lewin L., 1958, DILOGARITHMS ASS FUN
[20]   INVERSION IDENTITIES FOR THE SELF-DUAL POTTS AND ASHKIN-TELLER MODELS [J].
PEARCE, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6463-6469