FERMI-LIQUID AND NON-FERMI-LIQUID PHASES OF AN EXTENDED HUBBARD-MODEL IN INFINITE DIMENSIONS

被引:56
作者
SI, QM
KOTLIAR, G
机构
[1] Serin Physics Laboratory, Rutgers University, Piscataway
关键词
D O I
10.1103/PhysRevLett.70.3143
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an extended Hubbard model in the limit of infinite dimensions. The local correlation functions of this model are those of a generalized asymmetric Anderson model. The impurity model displays a Fermi liquid phase, a phase with neither the spin nor the charge of the impurity quenched, and an intermediate phase with the spin but not the charge of the impurity quenched. This analysis establishes the existence of metallic non-Fermi-liquid phases of the lattice model over a wide range of parameters and electron densities. The non-Fermi-liquid phases describe metals with incoherent spin and/or charge excitations and self-similar local correlation functions.
引用
收藏
页码:3143 / 3146
页数:4
相关论文
共 22 条
[1]   THE THEORY OF SUPERCONDUCTIVITY [J].
ANDERSON, PW .
PHYSICA C, 1991, 185 :11-16
[2]   EXACT RESULTS IN KONDO PROBLEM .2. SCALING THEORY, QUALITATIVELY CORRECT SOLUTION, AND SOME NEW RESULTS ON ONE-DIMENSIONAL CLASSICAL STATISTICAL MODELS [J].
ANDERSON, PW ;
YUVAL, G ;
HAMANN, DR .
PHYSICAL REVIEW B-SOLID STATE, 1970, 1 (11) :4464-+
[3]   ONE-DIMENSIONAL MODELS WITH 1-R2 INTERACTIONS [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (06) :1407-1415
[4]   APPROXIMATE MAPPING OF THE 2-IMPURITY SYMMETRIC ANDERSON MODEL IN THE LOCAL-MOMENT REGIME TO A CLASSICAL PROBLEM [J].
CHAKRAVARTY, S ;
HIRSCH, JE .
PHYSICAL REVIEW B, 1982, 25 (05) :3273-3282
[5]   NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1240-1243
[6]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[7]  
GIAMARCHI T, IN PRESS
[8]   SCALING THEORY OF ASYMMETRIC ANDERSON MODEL [J].
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1978, 40 (06) :416-419
[9]   THEORY OF THE ATOMIC LIMIT OF THE ANDERSON MODEL .1. PERTURBATION EXPANSIONS REEXAMINED [J].
HALDANE, FDM .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (24) :5015-5034
[10]  
HALDANE FDM, 1977, THESIS U CAMBRIDGE