DETERMINATION OF ESTIMATORS WITH MINIMUM ASYMPTOTIC COVARIANCE MATRICES

被引:13
作者
BATES, CE [1 ]
WHITE, H [1 ]
机构
[1] UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
关键词
D O I
10.1017/S026646660000801X
中图分类号
F [经济];
学科分类号
02 ;
摘要
We give a straightforward condition sufficient for determining the minimum asymptotic variance estimator in certain classes of estimators relevant to econometrics. These classes are relatively broad, as they include extremum estimation with smooth or nonsmooth objective functions; also, the rate of convergence to the asymptotic distribution is not required to be n-1/2. We present examples illustrating the content of our result. In particular, we apply our result to a class of weighted Huber estimators, and obtain, among other things, analogs of the generalized least-squares estimator for least L(p)-estimation, 1 less-than-or-equal-to p < infinity.
引用
收藏
页码:633 / 648
页数:16
相关论文
共 50 条
[31]   PARTIALLY IDENTIFIED ECONOMETRIC-MODELS [J].
PHILLIPS, PCB .
ECONOMETRIC THEORY, 1989, 5 (02) :181-240
[32]  
POWELL J, 1991, METHODS ECONOMETRICS, P357
[33]  
Rao C.R, 1963, SANKHYA A, VA25, P189
[34]  
Rao C.R., 1945, B CALCUTTA MATH SOC, V37, P81, DOI [DOI 10.1007/978-1-4612-0919-5_15, 10.1007/978-1-4612-0919-5_16]
[35]  
RAO CR, 1965, B INT STATISTICAL SO, V41, P55
[36]   ASYMPTOTICALLY EFFICIENT ESTIMATION IN THE PRESENCE OF HETEROSKEDASTICITY OF UNKNOWN FORM [J].
ROBINSON, PM .
ECONOMETRICA, 1987, 55 (04) :875-891
[37]   EFFICIENT ESTIMATION OF SIMULTANEOUS EQUATION SYSTEMS [J].
ROTHENBERG, TJ ;
LEENDERS, CT .
ECONOMETRICA, 1964, 32 (1-2) :57-76
[38]  
ROUSSAS GG, 1972, CONTIGUITY PROBABILI
[39]  
SARGAN JD, 1959, J ROY STAT SOC B, V21, P91
[40]   3-STAGE LEAST-SQUARES AND FULL MAXIMUM-LIKELIHOOD ESTIMATES [J].
SARGAN, JD .
ECONOMETRICA, 1964, 32 (1-2) :77-81