ON AN OPTIMIZATION PROBLEM WITH NESTED CONSTRAINTS

被引:5
作者
DYER, ME
FRIEZE, AM
机构
[1] CARNEGIE MELLON UNIV,DEPT MATH,PITTSBURGH,PA 15213
[2] UNIV LONDON QUEEN MARY COLL,DEPT COMP SCI & STAT,LONDON E1 4NS,ENGLAND
关键词
D O I
10.1016/0166-218X(90)90098-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe algorithms for solving the integer programming problem maximise ∑ j=1 n{cauchy integral}j(xj),subject to ∑ jε{lunate}Sixj≤bi, i=1,...,m,xj≥0, j=1,...,n, where the {cauchy integral}i are concave nondecreasing and the Si form a nested collection of sets. For the general problem, we present an algorithm of time-complexity O(n log2 n log b), where b is less than the largest of the bi. We also examine the case in which all {cauchy integral}i are identical and give an algorithm requiring O(n + m log m) time. Both algorithms use only O(n) space. © 1990.
引用
收藏
页码:159 / 173
页数:15
相关论文
共 12 条
[1]   THE MULTIPLE-CHOICE NESTED KNAPSACK MODEL [J].
ARMSTRONG, RD ;
SINHA, P ;
ZOLTNERS, AA .
MANAGEMENT SCIENCE, 1982, 28 (01) :34-43
[2]  
BACHEM A, 1983, MATH PROGRAMMING STA
[3]  
Blum M., 1973, Journal of Computer and System Sciences, V7, P448, DOI 10.1016/S0022-0000(73)80033-9
[4]  
BRUCKER P, 1982, 8TH P C GRAPH THEOR, P25
[5]   AN ALGORITHM FOR A SEPARABLE INTEGER PROGRAMMING PROBLEM WITH CUMULATIVELY BOUNDED VARIABLES [J].
DYER, ME ;
WALKER, J .
DISCRETE APPLIED MATHEMATICS, 1987, 16 (02) :135-149
[6]   THE LAGRANGIAN-RELAXATION METHOD FOR SOLVING INTEGER PROGRAMMING-PROBLEMS [J].
FISHER, ML .
MANAGEMENT SCIENCE, 1981, 27 (01) :1-18
[7]   THE COMPLEXITY OF SELECTION AND RANKING IN X + Y AND MATRICES WITH SORTED COLUMNS [J].
FREDERICKSON, GN ;
JOHNSON, DB .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1982, 24 (02) :197-208
[8]  
Galperin A., 1981, J COMPUT APPL MATH, V7, P173
[9]  
SLEATOR DD, 1981, 13TH P ANN ACM S THE, P114