PARSIMONIOUS DYNAMICAL RECONSTRUCTION

被引:35
作者
Mees, Alistair [1 ]
机构
[1] Univ Western Australia, Dept Math, Nedlands, WA 6009, Australia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1993年 / 3卷 / 03期
基金
澳大利亚研究理事会;
关键词
D O I
10.1142/S021812749300057X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many nonlinear deterministic models of time series have large numbers of parameters and tend to overfit in the presence of noise. This paper shows how to generate radial basis function models with small numbers of parameters for a given quality of fit. It also addresses questions of how to select subsets from candidate sets of centers for radial basis function models, and what kinds of basis functions to use, as well as how large a model is appropriate.
引用
收藏
页码:669 / 675
页数:7
相关论文
共 20 条
  • [1] Broomhead D. S., 1988, Complex Systems, V2, P321
  • [2] NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES
    CASDAGLI, M
    [J]. PHYSICA D, 1989, 35 (03): : 335 - 356
  • [3] ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS
    CHEN, S
    COWAN, CFN
    GRANT, PM
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02): : 302 - 309
  • [4] PREDICTING CHAOTIC TIME-SERIES
    FARMER, JD
    SIDOROWICH, JJ
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (08) : 845 - 848
  • [5] MEASURING THE STRANGENESS OF STRANGE ATTRACTORS
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICA D, 1983, 9 (1-2): : 189 - 208
  • [6] Huberman B., 1990, BACK PROPAGATION WEI, V1990
  • [7] AN IMPROVED ESTIMATOR OF DIMENSION AND SOME COMMENTS ON PROVIDING CONFIDENCE-INTERVALS
    JUDD, K
    [J]. PHYSICA D, 1992, 56 (2-3): : 216 - 228
  • [8] ESTIMATING DIMENSIONS WITH CONFIDENCE
    Judd, Kevin
    Mees, Alistair I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (02): : 467 - 470
  • [9] LeBaron B., 1991, PERSISTENCE DOW JONE
  • [10] Mees A., 1990, DYNAMICS COMPLEX INT, P104