PARSIMONIOUS DYNAMICAL RECONSTRUCTION

被引:35
作者
Mees, Alistair [1 ]
机构
[1] Univ Western Australia, Dept Math, Nedlands, WA 6009, Australia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1993年 / 3卷 / 03期
基金
澳大利亚研究理事会;
关键词
D O I
10.1142/S021812749300057X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many nonlinear deterministic models of time series have large numbers of parameters and tend to overfit in the presence of noise. This paper shows how to generate radial basis function models with small numbers of parameters for a given quality of fit. It also addresses questions of how to select subsets from candidate sets of centers for radial basis function models, and what kinds of basis functions to use, as well as how large a model is appropriate.
引用
收藏
页码:669 / 675
页数:7
相关论文
共 20 条
  • [11] Mees A. I, 1992, PHYSICA D UNPUB
  • [12] Mees A. I., 1992, DYNAMICAL SYST UNPUB
  • [13] DEVICE MODELING BY RADIAL BASIS FUNCTIONS
    MEES, AI
    JACKSON, MF
    CHUA, LO
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1992, 39 (01): : 19 - 27
  • [14] DYNAMICAL SYSTEMS AND TESSELATIONS: DETECTING DETERMINISM IN DATA
    Mees, Alistair I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (04): : 777 - 794
  • [15] POWELL MJD, 1985, 1985NA12 CAMBR U DEP
  • [16] RISSANEN J, 1989, STOCHASTIC COMPLEXIT
  • [17] Smith L. A, 1992, PHYSICA D UNPUB
  • [18] NONLINEAR FORECASTING AS A WAY OF DISTINGUISHING CHAOS FROM MEASUREMENT ERROR IN TIME-SERIES
    SUGIHARA, G
    MAY, RM
    [J]. NATURE, 1990, 344 (6268) : 734 - 741
  • [19] Tong H., 1990, NONLINEAR TIME SERIE, pxvi+564
  • [20] Watson D., 1992, COMP METHODS N UNPUB