AN IMPROVED POINCARE INEQUALITY

被引:35
作者
HURRISYRJANEN, R [1 ]
机构
[1] UNIV JYVASKYLA, DEPT MATH, SF-40351 JYVASKYLA, FINLAND
关键词
POINCARE INEQUALITY; POINCARE DOMAINS; JOHN DOMAINS; DOMAINS SATISFYING A QUASIHYPERBOLIC BOUNDARY CONDITION;
D O I
10.2307/2160188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a large class of domains D in R(n) including John domains satisfies the improved Poincare inequality \\u(x) - U-D\\L(q)(D) less than or equal to C\\del u(X)d(X, partial derivative D)(delta)\\L(p)(D) where p less than or equal to q less than or equal to np/n-p(1-delta), p(1-delta) < n, delta is an element of [0, 1], c = c(p, q, delta, D) < infinity, and u is in an appropriate Sobolev class.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 16 条
[1]   INTEGRAL-INEQUALITIES OF HARDY AND POINCARE TYPE [J].
BOAS, HP ;
STRAUBE, EJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (01) :172-176
[2]  
BOJARSKI B, 1988, LECT NOTES MATH, V1351, P52
[3]  
Boman J., 1982, 29 U STOCKH DEP MATH
[4]  
EDMUNDS DE, 1993, J LOND MATH SOC, V47, P79
[5]   QUASI-CONFORMALLY HOMOGENEOUS DOMAINS [J].
GEHRING, FW ;
PALKA, BP .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :172-199
[6]   THE WEIGHTED POINCARE INEQUALITIES [J].
HURRI, R .
MATHEMATICA SCANDINAVICA, 1990, 67 (01) :145-160
[7]  
Hurri R., 1988, ANN ACAD SCI FENN A1, V71, P1
[8]   UNBOUNDED POINCARE DOMAINS [J].
HURRISYRJANEN, R .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1992, 17 (02) :409-423
[9]   HARDY-LITTLEWOOD INEQUALITY FOR QUASI-REGULAR-MAPPINGS IN CERTAIN DOMAINS IN RN [J].
IWANIEC, T ;
NOLDER, CA .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :267-282
[10]  
Kufner A., 1985, WEIGHTED SOBOLEV SPA