EFFICIENT PRECONDITIONING FOR THE RHO-VERSION FINITE-ELEMENT METHOD IN 2 DIMENSIONS

被引:164
作者
BABUSKA, I
CRAIG, A
MANDEL, J
PITKARANTA, J
机构
[1] UNIV DURHAM,DEPT MATH SCI,DURHAM DH1 3LE,ENGLAND
[2] HELSINKI UNIV TECHNOL,INST MATH,SF-02150 HELSINKI,FINLAND
[3] UNIV COLORADO,COMPUTAT MATH GRP,DENVER,CO 80217
关键词
RHO-VERSION FINITE ELEMENT METHOD; PRECONDITIONING; DOMAIN DECOMPOSITION; PARALLEL COMPUTATION; POLYNOMIAL SOBOLEV INEQUALITY; POLYNOMIAL EXTENSION THEOREMS;
D O I
10.1137/0728034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Parallel preconditioners are formulated and analyzed for systems of equations arising from the p-version finite element method applied to second-order self-adjoint elliptic boundary value problems in two dimensions. By using new theoretical results for polynomial spaces, it is proved that the condition number of the preconditioned system grows as log2 p, where p is the degree of the polynomial space. Numerical results are presented showing that the condition number indeed grows very slowly with p.
引用
收藏
页码:624 / 661
页数:38
相关论文
共 24 条
[11]  
DRYJA M, 1988, DOMAIN DECOMPOSITION
[12]  
Hardy G., 1952, MATH GAZ
[13]  
Hille E., 1937, DUKE MATH J, V3, P729, DOI 10.1215/S0012-7094-37-00361-2
[14]   2-LEVEL DOMAIN DECOMPOSITION PRECONDITIONING FOR THE P-VERSION FINITE-ELEMENT METHOD IN 3 DIMENSIONS [J].
MANDEL, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1990, 29 (05) :1095-1108
[15]  
MANDEL J, 1990, THIRD INTERNATIONAL SYMPOSIUM ON DOMAIN DECOMPOSITION METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, P141
[16]   ITERATIVE SOLVERS BY SUBSTRUCTURING FOR THE P-VERSION FINITE-ELEMENT METHOD [J].
MANDEL, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 80 (1-3) :117-128
[17]  
MANDEL J, 1989, 7THP INT C FIN EL ME
[18]  
MANDEL J, 1989, JUN INT C SPECTR HIG
[19]  
Necas J., 1967, METHODES DIRECTES TH
[20]  
SZABO BA, 1985, PROBE THEORETICAL MA