THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D

被引:91
作者
MARKOWICH, PA [1 ]
MAUSER, NJ [1 ]
机构
[1] TECH UNIV BERLIN,FACHBEREICH MATH,W-1000 BERLIN 12,GERMANY
关键词
D O I
10.1142/S0218202593000072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under natural assumptions on the initial density matrix of a mixed quantum state (Hermitian, non-negative definite, uniformly bounded trace, Hilbert-Schmidt norm and kinetic energy) we prove that accumulation points (as the scaled Planck constant tends to zero) of solutions of a corresponding slightly regularized Wigner-Poisson system are distributional solutions of the classical Vlasov-Poisson system. The result holds for the gravitational and repulsive cases. Also, for every phase-space density in L+1 (R(x,v)6) and L+2(R(x,v)6) (with bound kinetic energy) we prepare a sequence of density matrices satisfying the above assumptions, such that the given density is the limit of the Wigner transforms of these density matrices.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 8 条
[1]   THE 3-DIMENSIONAL WIGNER-POISSON PROBLEM - EXISTENCE, UNIQUENESS AND APPROXIMATION [J].
BREZZI, F ;
MARKOWICH, PA .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (01) :35-61
[2]  
DIPERNA R, CEREMADE8824 PREPR
[3]  
ILLNER R, GLOBAL EXISTENCE UNI
[4]  
Markowich P., 1990, SEMICONDUCTOR EQUATI, DOI DOI 10.1007/978-3-7091-6961-20765.35001
[5]  
Reed M., 1975, METHODS MODERN MATH
[6]  
SIMON J, 1987, ANAL MATH PURA APPL, V166
[7]  
TAKAHASHI K, 1989, PROG THEOR PHYS SUPP, V98, P109
[8]  
Tatarskii VI., 1983, SOV PHYS USP, V26, P311, DOI [DOI 10.1070/PU1983V026N04ABEH004345, 10.1070/PU1983v026n04ABEH004345]