A COMPARATIVE-ANALYSIS OF STANDARDIZED AND UNSTANDARDIZED PRINCIPAL COMPONENTS-ANALYSIS IN REMOTE-SENSING

被引:97
作者
EKLUNDH, L [1 ]
SINGH, A [1 ]
机构
[1] US GEOL SURVEY,EROS DATA CTR,GRID SIOUX FALLS,SIOUX FALLS,SD 57198
关键词
D O I
10.1080/01431169308953962
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this study Principal Components have been calculated using covariance and correlation matrices for four data sets: Monthly NOAA-NDVI maximum-value composites, NOAA-LAC data, Landsat-TM data, and SPOT multi-spectral data. An analysis of the results shows consistent improvements in the signal to noise ratio (SNR) using the correlation matrix in comparison to the covariance matrix in the principal components analysis for all the data sets.
引用
收藏
页码:1359 / 1370
页数:12
相关论文
共 16 条
  • [1] [Anonymous], 1987, REMOTE SENSING IMAGE
  • [2] MONITORING LAND-COVER CHANGE BY PRINCIPAL COMPONENT ANALYSIS OF MULTITEMPORAL LANDSAT DATA
    BYRNE, GF
    CRAPPER, PF
    MAYO, KK
    [J]. REMOTE SENSING OF ENVIRONMENT, 1980, 10 (03) : 175 - 184
  • [3] Duda R. O., 1973, PATTERN CLASSIFICATI, V3
  • [4] EASTMAN JR, 1991, EXPLORATIONS GEOGRAP
  • [5] EASTMAN JR, 1990, IDRISI MANUAL VERSIO
  • [6] FUNG T, 1987, PHOTOGRAMM ENG REM S, V53, P1649
  • [7] Gonzalez R. C., 1977, DIGITAL IMAGE PROCES
  • [8] KIDWELL K, 1990, GLOBAL VEGETATION IN
  • [9] LODWICK GD, 1979, 13TH P INT S REM SEN, P1131
  • [10] PRINCE SD, 1991, INT J REMOTE SENS, V12, P1133