A COMPARATIVE-ANALYSIS OF STANDARDIZED AND UNSTANDARDIZED PRINCIPAL COMPONENTS-ANALYSIS IN REMOTE-SENSING

被引:97
作者
EKLUNDH, L [1 ]
SINGH, A [1 ]
机构
[1] US GEOL SURVEY,EROS DATA CTR,GRID SIOUX FALLS,SIOUX FALLS,SD 57198
关键词
D O I
10.1080/01431169308953962
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this study Principal Components have been calculated using covariance and correlation matrices for four data sets: Monthly NOAA-NDVI maximum-value composites, NOAA-LAC data, Landsat-TM data, and SPOT multi-spectral data. An analysis of the results shows consistent improvements in the signal to noise ratio (SNR) using the correlation matrix in comparison to the covariance matrix in the principal components analysis for all the data sets.
引用
收藏
页码:1359 / 1370
页数:12
相关论文
共 16 条
  • [11] READY P, 1973, IEEE T COMMUN, V10, P1123
  • [12] Richards J.A., 2013, REMOTE SENSING DIGIT, DOI [10.1007/978-3-642-30062-2, DOI 10.1007/978-3-642-30062-2]
  • [13] Schowengerdt R.A., 1983, TECHNIQUES IMAGE PRO
  • [15] STANDARDIZED PRINCIPAL COMPONENTS
    SINGH, A
    HARRISON, A
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1985, 6 (06) : 883 - 896
  • [16] MULTITEMPORAL DIMENSIONALITY OF IMAGES OF NORMALIZED DIFFERENCE VEGETATION INDEX AT CONTINENTAL SCALES
    TOWNSHEND, JRG
    GOFF, TE
    TUCKER, CJ
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1985, 23 (06): : 888 - 895