ON THE COMPLEXITY OF ASSEMBLY PARTITIONING

被引:35
作者
KAVRAKI, L
LATOMBE, JC
WILSON, RH
机构
[1] Robotics Laboratory, Department of Computer Science, Stanford University, Stanford, CA 94305
基金
美国国家科学基金会;
关键词
COMPUTATIONAL COMPLEXITY; COMPUTATIONAL GEOMETRY; ASSEMBLY PLANNING; MOTION PLANNING;
D O I
10.1016/0020-0190(93)90085-N
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the complexity of the assembly partitioning problem in the plane: given a collection of non-overlapping polygons, decide if there is a proper subcollection of them that can be removed as a rigid body without colliding with or disturbing the other parts of the assembly. It is shown that assembly partitioning is NP-complete. The result extends to several interesting variants of the problem.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 14 条
[1]  
ARKIN E, 1989, 5TH P ANN ACM S COMP, P334
[2]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[3]  
Guibas L. J., 1983, ADV COMPUTING RES
[4]  
HALBERSTAM H., 1983, SEQUENCES
[5]  
Homem de Mello L.S., 1991, COMPUTER AIDED MECHA
[6]  
KAVRAKI L, 1993, STANCS931467 STANF U
[7]  
NATARAJAN BK, 1988, 4TH P ANN S COMP GEO, P299
[8]   DISASSEMBLING TWO-DIMENSIONAL COMPOSITE PARTS VIA TRANSLATIONS [J].
Nussbaum, Doron ;
Sack, Joerg-Ruediger .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1993, 3 (01) :71-84
[9]   SEPARATING 2 SIMPLE POLYGONS BY A SEQUENCE OF TRANSLATIONS [J].
POLLACK, R ;
SHARIR, M ;
SIFRONY, S .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :123-136
[10]   ON THE PIANO MOVERS PROBLEM .1. THE CASE OF A TWO-DIMENSIONAL RIGID POLYGONAL BODY MOVING AMIDST POLYGONAL BARRIERS [J].
SCHWARTZ, JT ;
SHARIR, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (03) :345-398