X-RAY MASK DEVELOPMENT BASED ON SIC MEMBRANE AND W-ABSORBER

被引:24
作者
CHAKER, M [1 ]
BOILY, S [1 ]
DIAWARA, Y [1 ]
ELKHAKANI, MA [1 ]
GAT, E [1 ]
JEAN, A [1 ]
LAFONTAINE, H [1 ]
PEPIN, H [1 ]
VOYER, J [1 ]
KIEFFER, JC [1 ]
HAGHIRIGOSNET, AM [1 ]
LADAN, FR [1 ]
RAVET, MF [1 ]
CHEN, Y [1 ]
ROUSSEAUX, F [1 ]
机构
[1] CNRS, L2M, F-92220 BAGNEUX, FRANCE
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 1992年 / 10卷 / 06期
关键词
D O I
10.1116/1.585910
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a detailed description of x-ray mask technology based on SiC membrane and tungsten absorber. Amorphous SiC films were prepared using either a 100 kHz plasma-enhanced chemical vapor deposition (PECVD) system (allowing a high throughput) or a laser ablation deposition (LAD) technique. The PECVD a-SixC1-x:H films have a maximum Si-C bond density at x=0.5, a hydrogen content of 27 at. % and a high-compressive stress (1 GPa). The LAD films are stoichiometric, hydrogen-free, and under high-compressive stress (1.4 GPa). In order to achieve the tensile stress range (20-40 MPa) required for membrane fabrication, we developed a well-controlled rapid thermal annealing (RTA) process. At 633 nm, the resulting PECVD and LAD membranes have an optical transparency of 75% and 40%, respectively, and their corresponding biaxial Young's moduli are 250+/-30 and 360+/-60 GPa. A novel approach using RTA for ''fine tuning'' of the tungsten stress is also proposed. Low stress ( <10 MPa) is obtained for W layers initially under compressive stress lower than 300 MPa. Finally, using an e-beam patterning process based on a single resist layer and reactive ion etching for the pattern transfer, x-ray masks with linewidths down to 100 nm were developed.
引用
收藏
页码:3191 / 3195
页数:5
相关论文
共 24 条
[11]   AN ULTRA-LOW STRESS TUNGSTEN ABSORBER FOR X-RAY MASKS [J].
ITOH, M ;
HORI, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (01) :165-168
[12]   CHARACTERIZATION OF A-SIC-H FILMS PRODUCED IN A STANDARD PLASMA ENHANCED CHEMICAL VAPOR-DEPOSITION SYSTEM FOR X-RAY MASK APPLICATION [J].
JEAN, A ;
CHAKER, M ;
DIAWARA, Y ;
LEUNG, PK ;
GAT, E ;
MERCIER, PP ;
PEPIN, H ;
GUJRATHI, S ;
ROSS, GG ;
KIEFFER, JC .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (07) :3110-3115
[13]   STABLE LOW-STRESS TUNGSTEN ABSORBER TECHNOLOGY FOR SUB-HALF-MICRON X-RAY-LITHOGRAPHY [J].
KOLA, RR ;
CELLER, GK ;
FRACKOVIAK, J ;
JURGENSEN, CW ;
TRIMBLE, LE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (06) :3301-3305
[14]   INSITU STRESS MONITORING AND DEPOSITION OF ZERO-STRESS W FOR X-RAY MASKS [J].
KU, YC ;
NG, LP ;
CARPENTER, R ;
LU, K ;
SMITH, HI ;
HAAS, LE ;
PLOTNIK, I .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (06) :3297-3300
[15]  
KU YC, 1987, MICROELECTRON ENG, V6, P259
[16]  
Luthje H., 1987, Proceedings of the SPIE - The International Society for Optical Engineering, V773, P15, DOI 10.1117/12.940348
[17]  
LUTHJE H, 1987, MICROELECTRON ENG, V6, P259
[18]  
MALDONADO JR, 1991, P SOC PHOTO-OPT INS, V1465, P2, DOI 10.1117/12.47339
[19]  
Oda M., 1990, Microelectronic Engineering, V11, P241, DOI 10.1016/0167-9317(90)90106-4
[20]   FABRICATION OF SUB-100NM LINEWIDTH X-RAY MASKS AND REPLICATION USING SYNCHROTRON RADIATION AT SUPER-ACO [J].
ROUSSEAUX, F ;
HAGHIRIGOSNET, AM ;
KEBABI, B ;
CHEN, Y ;
LAUNOIS, H .
MICROELECTRONIC ENGINEERING, 1992, 17 (1-4) :157-160