SYMMETRY BREAKING FOR A NONLINEAR SCHRODINGER EQUATION

被引:59
作者
DAVIES, EB
机构
[1] St. John's College, Oxford
关键词
D O I
10.1007/BF01221731
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a notion of stability for molecular states and show that the stable ground states of a molecular Hamiltonian are not unique (break rotational symmetry) if the atomic masses are greater than certain finite critical values. The stable ground states are stationary with respect to a new non-linear Schrödinger equation, which is exactly soluble in certain simple cases. © 1979 Springer-Verlag.
引用
收藏
页码:191 / 210
页数:20
相关论文
共 13 条
[1]   LOWER BOUNDS FOR EIGENVALUES OF SCHRODINGERS EQUATION [J].
BAZLEY, NW ;
FOX, DW .
PHYSICAL REVIEW, 1961, 124 (02) :483-&
[2]   The Physics of the Born-Oppenheimer Approximation [J].
Essen, H. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1977, 12 (04) :721-735
[3]   COMMENTS ON MIELNIK GENERALIZED (NON-LINEAR) QUANTUM-MECHANICS [J].
HAAG, R ;
BANNIER, U .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (01) :1-6
[4]   RATE OF ASYMPTOTIC EIGENVALUE DEGENERACY [J].
HARRELL, EM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (01) :73-95
[5]  
KAC M, 1969, STUD APPL MATH, V48, P257
[6]  
KIBBLE TWB, 1978, RELATIVISTIC MODELS
[7]   HARTREE-FOCK THEORY FOR COULOMB SYSTEMS [J].
LIEB, EH ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :185-194
[8]  
LIEB EH, 1977, STUD APPL MATH, V57, P93
[9]   GROUND-STATE ENERGY AND EFFECTIVE MASS OF THE POLARON [J].
LIEB, EH ;
YAMAZAKI, K .
PHYSICAL REVIEW, 1958, 111 (03) :728-733
[10]   GENERALIZED QUANTUM-MECHANICS [J].
MIELNIK, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 37 (03) :221-256