A POSTERIOR SCHRODINGER-EQUATION FOR CONTINUOUS NONDEMOLITION MEASUREMENT

被引:57
作者
BELAVKIN, VP
机构
[1] Institute of Physics, Copernicus University, Toruń
[2] M.I.E.M.
关键词
D O I
10.1063/1.528946
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A continuous model for a nondemolition observation of an atom is given. An equation for the corresponding instrument is found and a stochastic dissipative Schrödinger equation for the unnormalized posterior wave function of the atom is derived. It is shown that the continuously observed isolated atom relaxes to the ground state without mixing. © 1990 American Institute of Physics.
引用
收藏
页码:2930 / 2934
页数:5
相关论文
共 18 条
[11]  
Davies E. B., 1976, QUANTUM THEORY OPEN
[12]   LOCALIZED SOLUTION OF A SIMPLE NONLINEAR QUANTUM LANGEVIN EQUATION [J].
DIOSI, L .
PHYSICS LETTERS A, 1988, 132 (05) :233-236
[13]   CONTINUOUS QUANTUM MEASUREMENT AND ITO FORMALISM [J].
DIOSI, L .
PHYSICS LETTERS A, 1988, 129 (8-9) :419-423
[14]   INPUT AND OUTPUT IN DAMPED QUANTUM-SYSTEMS - QUANTUM STOCHASTIC DIFFERENTIAL-EQUATIONS AND THE MASTER EQUATION [J].
GARDINER, CW ;
COLLETT, MJ .
PHYSICAL REVIEW A, 1985, 31 (06) :3761-3774
[15]  
GHIVARDI GC, IN PRESS PHYS REV A
[16]  
GISIN N, 1989, HELV PHYS ACTA, V62, P363
[17]   QUANTUM ITOS FORMULA AND STOCHASTIC EVOLUTIONS [J].
HUDSON, RL ;
PARTHASARATHY, KR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (03) :301-323
[18]  
LINDSAY M, 1988, QUANTUM PROBABILITY, V3, P192